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Abstract  The inverse planning for a step-and-shoot plan in intensity-modulated radiotherapy (IMRT) is usually a 

multiple step process. Before being converted into the MLC segments, the optimum intensity profiles of beams, which 

are generated by an optimization algorithm, shall be discretized into a few intensity levels. The discretization process 

of the optimum intensity profiles can induce deviations in the final dose distribution from the original optimum dose 

distribution. This paper describes a genetic algorithm for the discretization of given optimum intensity profiles. The 

algorithm minimizes an objective function written in terms of the intensity levels. Both the dose-based objective 

function, which is defined by the deviation between the dose distributions before and after the discretization, and the 

intensity-based objective function, which is defined by the deviation between the optimum intensity profiles and the 

discretization intensity profiles, have been adopted. To evaluate this algorithm, a series of simulation calculations had 

been carried out using the present algorithm, the even-spaced discretization and the k-means clustering algorithm 

respectively. By comparing the resultant discretization-induced deviations (DIDs) in intensity profiles and in dose 

distributions, we have found that the genetic algorithm induced less DIDs in comparison with that induced in the 

even-spaced discretization or the k-means clustering algorithm. Additionally, it has been found that the DIDs created 

in the genetic algorithm correlate with the complexity of the intensity profiles that is measured by the “fluence map 

complexity”. 
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1 Introduction 

 Beamlet based inverse planning is one approach 
commonly used to generate static multileaf collimator 
(SMLC) plan in IMRT. The inverse planning is usually 
a multiple step process[1-3]. First, the optimum 
intensity profiles that would conduce to a dose 
distribution best satisfying the given prescription are 
created by an optimization algorithm. Then, each of 
the optimum intensity profiles, in which the intensities 
of the beamlets are continuously variable, is 

discretized to form a discrete intensity profile in which 
the intensity of a beamlet takes a value among a few 
values that are called the intensity levels. Finally, the 
discrete intensity profiles are converted into a set of 
MLC segments by a leaf-sequencing algorithm. In the 
multiple step process, there are many physical or 
numerical factors affecting the final quality of the 
inverse planning. There have been instances in which 
the inverse planning resulted in unfavorable plans in 
comparison with that generated by the forward 
planning[4]. Thus, identifying the influences of each 
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factor and improving the corresponding algorithms are 
desirable. In this paper, we focus on the study of the 
discretizing procedure mentioned above. 

The simplest discretization algorithm is the 

even-spaced discretization algorithm that divides the 

optimum intensity profile into a few evenly spaced 

intensity levels[1,2]. This method has the advantage that 

the generated discrete intensity profile can be 

sequenced by leaf-sequencing algorithms that create 

MLC segments of multiple unit weights[5-7]. However, 

the final solution would significantly deviate from the 

original optimization solution, especially when the 

number of the intensity levels is small[8]. The deviation 

could be reduced by using more intensity levels but 

with the price of dramatic increase in MLC segment 

number[5-7]. 

A method, in which the gradient-based 

optimization and the discretization of the intensity 

profile proceeded in turn for a number of iteration 

steps, were adopted by Keller-Reichenbecher et al[9] in 

an attempt to integrate the discretizing procedure with 

the optimization procedure of the intensity profile. 

However, the method did not show good convergence 

behavior and thus the authors actually used only the 

results obtained by one optimization-discretization 

step. Recently, Sun et al[8] applied the simulating 

annealing algorithm to directly optimize the discrete 

intensity profile. This method was computationally 

inefficient. In addition, due to its stochastic nature, the 

simulated annealing algorithm usually generates 

intensity profiles of less smoothness[10]. 

An alternative approach to reduce the deviation 

induced in the discretizing procedure is to discrete the 

optimum intensity profile using unevenly spaced 

intensity levels, as described by a few groups of 

authors[11-13]. The k-means clustering algorithm was 

applied by Wu et al[13]. In the k-means clustering 

algorithm, the initial clusters of the intensities were 

created in terms of the values of the intensities and a 

given error tolerance. The deviation between the 

discrete intensity profile and the optimum intensity 

profile was diminished by iteratively switching the 

intensities in adjacent clusters. The k-means clustering 

algorithm is a local searching algorithm and thus the 

resultant intensity levels could be potentially 

suboptimal. The effects of the user defined error 

tolerance, equivalently the number of intensity levels, 

in the k-means clustering algorithm were also studied 

by Nioutsikou et al[14]. 

The discrete intensity profiles of uneven-spaced 

intensity levels can be sequenced by leaf-sequencing 

algorithms proposed by Bortfeld et al[1] and Chen et 

al[15]. Thus, the present paper is focused on describing 

a discretizing method in which an objective function 

written in terms of the intensity levels is minimized by 

the genetic algorithm. Using a series of simulated 

optimum intensity profiles and a clinical case, we have 

evaluated the algorithm by comparing the 

discretization-induced deviations (DIDs) in the present 

algorithm with that in the even-spaced discretization 

algorithm and the k-means clustering algorithm. It will 

be shown that our algorithm can result in less DID in 

the discretization procedure while without losing 

computational efficiency. 

2 Methods  

2.1 The objective functions 

We have used the intensity-based objective 

function and the dose-based objective function to 

describe the discretization-induced deviations. 

Assuming that Ii is the intensity of the beamlet i in an 

optimum intensity profile and the optimum intensity 

profile is to be discretized into L intensity levels, the 

intensity-based objective function is defined as 
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where Ii(g) is the intensity of the beamlet i after the 

discretization and NI the number of beamlets in the 

optimum intensity profile, and 
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With gi in an ascending order, denote a number of 

intensity values to be optimized. As schematically 

shown in Fig.1, g divides the optimum intensity profile 

into L groups according to intensity value. The average 

value of the intensities in the k-th group is written as 
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which defines the k-th intensity level. The Ii(g) is thus 

written as 

( ) ( ) ( ) ( )11

L
I g I g g I gi i k k i kk

    
     (3) 

where θ(x) denotes the step function defined as θ(x)=1, 

for x>0 and otherwise θ(x)=0. 

 

Fig.1  A schematic graph explaining the present algorithm. For 
a given optimum intensity profile, the intensity histogram are 
divided into a few sections by a set of values gi (i=0,1,…,L) 
where L is the preset number of the intensity levels. The 
intensity levels to be created are the average of the beamlet 
intensities in each section.  The algorithm searches the optimal 
values of gi that make the given objective function minimal. 

Because induced deviation in dose distribution is 

ultimately concerned in the discretization process, we 

also used the dose-based objective function OD(g) that 

is defined by the deviation between the dose 

distributions before and after the discretization is to be 

minimized. OD(g) is thus written 
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where dn
(i) is the dose on voxel n contributed by i-th 

beamlet of unit weight, and Nv the number of voxels 

involved. Ii(g) is also determined by Eqs. (2) and (3). 

Note the objective function OD(g) is not equivalent to 

OI(g). To demonstrate this, let us consider a schematic 

example in which we have only one intensity level φ 

and thus I=φ for all the beamlets. OI(g) is thus written 
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In principle, using the dose-based objective 

function should induce least deviation in terms of dose 

distribution, however, it is more computer time 

consuming. Thus, the results obtained by using the 

dose-based objective function can be used for 

evaluating intensity-based discretization approaches. 

2.2 The genetic algorithm 

We used the genetic algorithm to minimize the 

objective function OI(g) and OD(g). This algorithm 

was designed to be independent of the concrete form 

of the objective functions. To construct the 

chromosomes in the genetic algorithm, we introduced 

the scaled intensity values 

0 1
{ , , ..., }

L
g g g g  

with                0 1
i

g   

Assuming the maxima intensity of a given 

optimum intensity is maxI , the scaled intensity values 

are defined by 

max
g I g               (5) 

where α is a parameter larger than unit. The resultant g 

are thus in a range from 0 to αImax. A chromosome is 

thus encoded by the decimal digits of g . For example, 

in case L=5 and the user defined digital precision 

ND=3, a chromosome encoded by 

{0.01, 0.345, 0.528, 0.715, 0.823, 0.946}g   

is (010345528715823946). In practices, ND= 5 was 

used. 
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A generation contains NP chromosomes ( )j
g for 

j=1, 2…NP with j denoting the j-th chromosome. Each 

of them results in the objective value O(g(j)). We 

generated the initial generation by assigning ( )j
g with 

random values from 0 to 1. Then a generation evolves 

to next generation following the operations of 

selection, crossover, mutation and replacement. The 

process is similar to that described in detailed in a 

previous paper of ours for beam orientation 

optimization in IMRT[16]. The process can be outlined 

as follows. 

(a) The chromosomes in current generation are 

ranked according to their objective value O(g(j)); 

(b) Two chromosomes are selected by the roulette 

wheel selection. The probabilitiy for a chromosome to 

be selected is determined by its rank; 

(c) The crossover between the selected 

chromosomes is performed at a randomly selected 

cut-point with the probability pc. Two offspring are 

generated; 

(d) The offspring undergo mutation at a randomly 

selected point with probability pm; 

(e) Step (b)-(d) are repeated for nr times to 

generate 2nr offspring to replace the chromosomes that 

are last ranked in the current generation. A new 

generation is thus created. The chromosomes in the 

new generation are decoded and the objective function 

O(g(j)) are calculated; 

f) Step (a)-(e) are repeated and the process stops 

at the generation Jm where the convergence criteria or 

the preset maximum generation is reached. The final 

solution is denoted by 
( ) ( ) ( ) ( )

m m m m

1 2
I

( ) { ( ), ( ), ......, ( )}
J J J J
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By experiments, the parameters NP, pc and pm 

were selected as 100, 0.5 and 0.025 respectively to 

guarantee the process converges. 

2.3 Evaluation method of the algorithm 

For a discretization intensity profile I, we used 

the standard deviation in intensity profile SI, the 

standard deviation in dose distribution SD and the γ 

index[17] to measure the deviation induced in 

discretizing the optimum intensity profile. The 

standard deviation in intensity profile SI and the 

standard deviation in dose distribution SD are defined 

respectively 
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Note SI and SD share the similar forms of the 

objective functions OI(g) and OD(g), however, Ii here 

refer to the final discretization intensity profile 

obtained by a discretization algorithm. 

The γ index was firstly introduced by Low et al to 

quantitatively compare calculated dose distributions 

and measured dose distributions. Here, we regard the 

dose distribution dopt(r) created by the optimum 

intensity profile as the standard for the comparison. In 

the γ index methodology, the vector {r, dopt(r)} defines 

a point in 4-dimensional position-dose space. 

Assuming the dose distribution created by the discrete 

intensity profile is ddis(r′), { r′, ddis(r′)} forms a track in 

the position-dose space when r′ is run in the whole 

position space. The γ index at position r is thus defined 

as the closest scaled-distance between point {r, dopt(r)} 

and the track {r′, ddis(r′)}, that reads 
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where Γ(r, r′) is the scaled-distance 
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dis opt
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the standard value ∆R was chosen to be 3 mm and ∆D  

0.03. As far as dose distributions are concerned here 

and also in SD, we used a modified version of 

superposition-convolution algorithm[18,19], which can 

produce the dose matrix of beamlets. The voxel size in 

the dose calculations was chosen as 2mm×2mm×2mm. 

This size could be too coarse to calculate the γ index at 

r. Thus, we divided the voxels around r into fine 

voxels of size of 0.2mm×0.2mm×0.2mm and the dose 

distribution ddis(r′) in these fine voxels was calculated 

using linear interpolation of the doses on the 

2mm×2mm×2mm voxels. The distribution function γ(r) 
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probe the difference between dose distributions at 

given positions. It is convenient to introduce the γ 

index histogram P(x) that is defined as the percentage 

of positions in test that have γ>=x. The positions 

included in the calculations of the γ index are only 

those at which at least one of the dose distributions 

dopt(r) and ddis(r) is nonzero. 

To compare the present algorithm with other 

algorithms, we have implemented the even-spaced 

discretization algorithm and the k-means clustering 

algorithm. The implementation of the k-means 

clustering algorithm followed that described in detail 

in literatures[13], other than no constraints on the 

difference between adjacent intensity levels was 

imposed. 

3 Results 

The aim of this paper is to present a general 

algorithm used for discretizing a given optimum 

intensity profile in IMRT. Thus, we used simulated 

optimum intensity profiles as well as a clinical case to 

test the algorithm. 

3.1 The simulated case  

The testing phantom used for dose calculations 

was of cubic geometry and was discretized into 2mm× 

2mm×2mm voxels. The field sizes were 10cm×10cm 

and 5cm×5cm. For each of the field sizes, the beamlet 

size were 1cm×1cm and 0.5cm×0.5cm respectively. 

The ‘optimum’ intensity profiles used for the testing 

were created by randomly assigning the beamlet 

intensities with values ranging from Φmin to Φmax. In 

this study, we choose Φmax=1 and Φmin=0.2, Φmin=0.4, 

Φmin=0.6 andΦmin=0.8 respectively. For each 

combination of Φmin, the field sizes and beamlet sizes, 

we created 10 test intensity profiles. Varying the 

parameters Φmin results in profiles of different 

complexity that could be, in some degree, quantified 

by the “fluence map complexity” (FMC), that is 

defined as the standard deviation of the adjacent 

beamlet intensities in leaf travel direction[20]. For a 

two-dimensional intensity profile, the FMC is written as 
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where i is the index of beamlet in leaf travel direction 

and Ny is the number of rows of beamlets in the 

perpendicular direction. Nb is the total number of 

beamlets. A small Φmin usually leads to larger 

fluctuations in the intensity profiles and thus larger 

FMC values. 

With these test intensity profiles, we carried out 

intensity profile discretizations using the number of 

intensity levels L=5, 7 and 10. For the convenience of 

narration, we designate the genetic algorithm using the 

intensity-based objective function as IBGA, the 

genetic algorithm using the dose-based objective 

function as DBGA, the even-spaced discretization 

algorithm as ESA and the k-means clustering 

algorithm as KMA. The results generated by these 

algorithms are denoted by corresponding superscripts. 

Fig.2a shows the comparison of SI data obtained 

by using IBGA, DBGA, ESA and KMA for the cases 

that the field size was 10cm×10cm and the beamlet 

size 1cm×1cm. The three panes, from left to right, 

correspond to the number of intensity levels L=5, 7 

and 10 respectively. From left to right in each pane, 

the data points correspond to descending complexities 

of the test intensity profiles, i.e., Φmin=0.2, 0.4, 0.6 and 

0.8 respectively. Each of the data points is the average 

value of SI obtained from ten test intensity profiles. 

Generally, the IBGA results in the lowest SI. Since 

minimization of the DID in intensity profile is in 

accordance with the optimization goal of IBGA, 

SI
(IBGA) is lower than SI

(DBGA), however, the difference 

is small. SI
(IBGA) and SI

(DBGA) tend to be coincident 

when the number of intensity levels is large, or the 

intensity profile is less complex. SI
(KMA) is obvious 

higher than SI
(IBGA) and SI

(DBGA). At large L and Φmin, 

the difference between SI
(KMA) and SI

(IBGA) and SI
(DBGA) 

diminishes, however, the difference between SI
(ESA) 

and SI
(IBGA) and SI

(DBGA) is more significant. Fig.2b 

shows the corresponding SD data. Since the DBGA 

directly minimize the DID in dose distribution, the 

DBGA results in the lowest SD. The difference 

between SD
(DBGA) and SD

(IBGA) is minimal and 

diminishes as L becomes large and the intensity 

profiles become complex. It is evident that DBGA and 

IBGA result in less DID in dose distribution in 

comparison with that result by the ESA and the KMA. 
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Fig.2  The standard deviation in intensity profile SI (a) and in 
dose distribution SD (b) obtained by IBGA, DBGA, KMA and 
ESA for the field size 10cm×10cm and the beamlet size 
1cm×1cm. 

It is also observed in Fig.2 that, on average, SI or 
SD of the IBGA and the DBGA descend monotonically 
with the decrease of the complexity of the intensity 
profiles that was navigated by Φmin. Corresponding to 
the second pane in Fig.2, Fig.3 displays in detail the 
relationships between the FMC and SI as well as SD for 
all the test intensity profiles of field size 10cm×10cm 
at L=7. It is observed that the data points of the IBGA 
and the DBGA are least scattered in comparison with 
the data points of the KMA, while the ESA data points 
are too scattered to show any correlation between the 
DID and FMC. The correlation between the DID and 
the complexity of the intensity profiles could be of 
interests in the consideration that, when a smoothing 
filter is applied in the intensity profile optimization 
that creates the optimum intensity profiles, the 
correlation makes the effect of the smoothing on the 
DID more anticipatable. Similar conclusion could be 
drawn by the results obtained by using different field 
size and the beamlet size. 

 

 

Fig.3  The relationship of SI (a) and SD (b) with the fluence 
map complexity (FMC) of the test intensity profiles. The results 
were obtained by IBGA, DBGA, KMA and ESA for the field 
size  10cm×10cm, the beamlet size 1cm×1cm and the number 
of intensity level L=7. 

Fig.4 shows the γ index histograms P(x) for the 

number of intensity levels L=7. Each of the histograms 

was also the average over ten histograms obtained by 

ten test intensity profiles with field size 10cm×10cm 

and beamlet size 1cm×1cm. Φmin used to generate the 

test intensity profiles was 0.2 and the corresponding 

FMC on average is 0.0505. Generally, the γ index 

histograms of the IBGA and the DBGA are very close 

and hardly to be distinguished. Both P(IBGA)(x) and 

P(DBGA)(x) are obviously lower than P(KMA)(x) and 

P(ESA)(x). 

For example, at x=0.5, P(IBGA), P(DBGA), P(KMA) 

and P(ESA) are 2.8%, 3%, 4.2% and 6.5% respectively. 

Results for alternative FMC values also display the 

similar feature. 
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Fig.4  The histogram of the γ index obtained by IBGA, DBGA, 
KMA and ESA using the number of intensity levels L=7. The 
field size was 10cm×10cm, and the beamlet size was 1cm×1cm. 
Each curve was the average of ten histograms obtained by ten 
test intensity profiles of Φmin=0.2. The average FMC of the 
intensity profiles is 0.0505. 

3.2 The clinical case 

The clinical case used for testing was a 

complicated case for IMRT treatment of the tonsil. 

This case had been used in a previous paper of ours[21]. 

In this case, there were three PTVs that were 

prescribed to doses of 66, 60, and 54 Gy, respectively. 

The dose-volume constraint for the left parotid was no 

more than 20% of the volume could be overdosed 

above 15 Gy. The constraint for the right parotid was 

no more than 60% of the volume could be overdosed 

above 25 Gy. Hard constraints were imposed to the 

spinal cord, brain stem, and sub-mandibular gland 

with the dose limits of 45, 50 and 25 Gy, respectively. 

Fig.5 shows an axial slice of the patient anatomy. The 

voxel size of this phantom is 2mm2mm2mm. 

The clinical case was planned using five evenly 

spaced 6 MV photon beams. The optimum intensity 

profiles were created by the simulated dynamics 

algorithm[22]. In this process, the beamlet sizes of 

1cm×1cm and 0.5cm×0.5cm were used respectively. 

The discretizations of the optimum intensity profiles 

were carried out by IBGA with the number of intensity 

levels L=5, 7 and 10 respectively. For comparison, 

ESA and KMA were also used for discretizing the 

optimum intensity profiles. Because similar 

conclusions can be drawn from data generated by 

using different beamlet sizes, only the results obtained 

by using beamlet size 1cm×1cm are shown. 

Fig.6a shows the comparison of SI data obtained 

by using IBGA, ESA and KMA. For all beams and all 

values of L, the IBGA induces the least SI and the ESA 

induces the largest SI. For L=5, the differences 

between SI
(IBGA) and SI

(KMA) as well as SI
(ESA) are 

obvious. For L=7, SI
(IBGA) and SI

(KMA) in the second 

beam and the fifth beam tend to be close, but SI
(IBGA) 

and SI
(KMA) remain different in the other beams. For 

L=10, the difference between SI
(IBGA) and SI

(KMA) 

diminishes. Fig.6b shows the corresponding SD data. It 

is evident that the IBGA result in the least SD in 

comparison with those of ESA and KMA. 

 
Fig.5  An axial slice of the clinical case used for testing the 
discretization algorithm. 

Fig.7 shows the γ index histograms P(x) for the 

number of intensity levels L=7. It is observed that 

P(IBGA) is lower than P(KMA) and P(ESA) for all γ values. 

The percentage of dose points of γ≥1 is about 4%, 6% 

and 8% for IBGA, KMA and ESA respectively. 

The DID can be also demonstrated by DVHs. 

Fig.8 compares the DVHs generated by the original 

optimum intensity profile and the discretization 

intensity profiles of IBGA, KMA and ESA with the 

number of intensity levels L=7. It is observed that the 

discretization induced degradation in the DVHs of the 

PTVs, while the degradation in the DVH of the 

parotids is minor. Generally, the degradation induced 

by IBGA is the least. Especially for the PTV1, the 

DVH generated by IBGA is significantly better than 

the DVHs generated by KMA and ESA. This result 

suggests again that the present algorithm for 

discretizing optimum intensity profiles created less 

DIDs. 



No.1  CHEN Bingzhou et al. / A genetic algorithm used for the intensity level discretization in MLC leaf sequencing for step … 29 

 

 

 

Fig.6  The standard deviation in intensity profile SI and in dose 
distribution SD for the clinical case. Five evenly spaced beams 
were used and the optimum intensity profiles of the beams were 
generated by the simulated dynamics algorithm. The first pane 
displays the standard deviation for the number of intensity 
levels L=5, the second pane for L=7 and the third pane for L=10 
separately. (a) SI for each beam; (b) SD for the total dose 
distribution. 

 

Fig.7  The comparison of the histograms of the γ index 
obtained by IBGA, KMA and ESA using the number of 
intensity levels L=7 for the clinical case. 

 

Fig.8.  The comparison of the DVHs created by the original 
optimum intensity profiles and the discretization intensity 
profiles of the IBGA, KMA and ESA that used  the number of 
intensity levels L=7 for the clinical case. 

A question that may be concerned is if the IBGA 

will induce much more MLC segments to achieve the 

improvement in dose distribution. For a given 

discretization intensity profile, the number of 

segments may depend on the segmentation algorithm 

and a specific delivery mode. In this paper, the 

segmentation algorithm by Bortfeld for step-and-shoot 

mode was implemented[1]. Table 1 shows the number 

of segments for the clinical case for intensity levels 

L=5, 7 and 10. Generally, the IBGA results in more 

segments, however, the increase of the segment 

number is minor in respect to the improvement in 

dose. 

Table 1  Comparison of the number of segments under differ-
ent clustering algorithms and different numbers of intensity 
levels for the clinical case 

4 Discussion and conclusion 

An issue that is often concerned with in the 

inverse planning for IMRT is how optimal the final 

solution could be achieved. Even under a well-defined 

objective function, the final solution could deviate 

from the real optimal solution, due to the physical and 

 
Beamlet size: 1cm×1cm 

ESA KMA IBGA 

L=5 33 35 36 

L=7 48 48 50 

L=10 67 66 72 
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numerical approximations in the inverse planning. A 

number of authors have investigated this issue from 

different perspectives. For example, based on the 

commonly used dose-based objective function with 

dose-volume constrains, Llacer et al[20] and Wu and 

Mohan[23] had investigated the effects of multiple local 

minima in the intensity profile optimization. Their 

numerical results indicated that the multiple local 

minima did not pose a clinically significant problem. 

That conclusion had been confirmed by the theoretical 

analysis of Alber et al[24]. Thus, the afterward proce-

dures have likely more marked effects. 

In the present paper, we have put the focus on 

another source of numerical error, i.e., the deviation 

induced in discretizing the intensity profiles obtained 

in the previous optimization procedure. We have 

described the genetic algorithm used for the intensity 

profile discretization. Both the intensity-based 

objective function and the dose-based objective 

function have been used. In principle, the genetic 

algorithm using the dose-based objective function 

induces the least DID in dose distribution and thus, in 

spite of its low computational efficiency due to a lot of 

dose calculation involved, can be used as a tool to 

evaluate the IBGA and other discretization algorithms. 

Our testing results have shown that the differences 

between the DIDs created by the IBGA and the DBGA 

are small. We therefore recommend the IBGA for 

routine uses because its computational efficiency is 

much higher than that of the DBGA. On a PC with a 

Pentium IV 2.6 GHz processor, the IBGA takes about 

1s of CPU time for a field of 100 beamlets and the 

total time is linearly proportional to the total number 

of beamlets of all the fields. In the calculations, the 

genetic algorithm evolved for 500 generations. 

Actually, the convergence had been reached at about 

200 evolution generations. The IBGA and the DBGA 

are global searching algorithms. The comparison 

between the IBGA and the KMA has show the 

advantage, in terms of the DID in both the intensity 

profiles and the dose distributions, of the IBGA over 

the KMA. The advantage of the IBGA over the ESA is 

more prominent, especially when the number of 

intensity levels is small and the intensity profiles are 

complex. 

In the interest of improving the delivery 

efficiency in SMLC, a number of authors have 

addressed the smoothing of optimization intensity 

profiles[21,25,26]. One can expect that the DID could 

also be reduced by smoothing the optimum intensity 

profiles. In the present study, it has been observed that 

the correlation between the DID and the complexity, 

which was measured by the FMC, depend on the 

discretization algorithms. Stronger correlation between 

the DID in IBGA and FMC has been observed than the 

correlation in KMA and ESA. This feature of the 

IBGA should make the smoothing of the optimum 

intensity profiles more benefiting in the reduction of 

the DID. 
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