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Abstract The kinetic freeze-out temperatures, T0, in

nucleus–nucleus collisions at the Relativistic Heavy Ion

Collider (RHIC) and Large Hadron Collider (LHC) ener-

gies are extracted by four methods: (1) the Blast-Wave

model with Boltzmann–Gibbs statistics (the BGBW

model), (2) the Blast-Wave model with Tsallis statistics

(the TBW model), (3) the Tsallis distribution with flow

effect (the improved Tsallis distribution), and (4) the

intercept in T ¼ T0 þ am0 (the alternative method), where

m0 denotes the rest mass and T denotes the effective tem-

perature which can be obtained by different distribution

functions. It is found that the relative sizes of T0 in central

and peripheral collisions obtained by the conventional

BGBW model which uses a zero or nearly zero transverse

flow velocity, bT, are contradictory in tendency with other

methods. With a re-examination for bT in the first method,

in which bT is taken to be �ð0:40 � 0:07Þc, a recalcula-

tion presents a consistent result with others. Finally, our

results show that the kinetic freeze-out temperature in

central collisions is larger than that in peripheral collisions.

Keywords Kinetic freeze-out temperature � Methods for

extraction � Central collisions � Peripheral collisions

1 Introduction

Temperature is an important concept in high-energy

nucleus–nucleus collisions. Usually, three types of tem-

peratures which contain the chemical freeze-out tempera-

ture, kinetic freeze-out temperature, and effective

temperature are used in the literature [1–5]. The chemical

freeze-out temperature describes the excitation degree of

the interacting system at the stage of chemical equilibrium

in which the chemical components (relative fractions) of

particles are fixed. The kinetic freeze-out temperature

describes the excitation degree of the interacting system at

the stage of kinetic and thermal equilibrium in which the

(transverse) momentum spectra of particles are no longer

changed. The effective temperature is not a real tempera-

ture. In fact, the effective temperature is related to particle

mass and can be extracted from the transverse momentum

spectra by using some distribution laws such as the stan-

dard (Boltzmann, Fermi–Dirac, and Bose–Einstein), Tsal-

lis, and so forth.

Generally, the chemical freeze-out temperature is usu-

ally obtained from the particle ratios [6–8]. It is equal to or

larger than the kinetic freeze-out temperature due to the

chemical equilibrium during or earlier than the kinetic

equilibrium. The effective temperature is larger than the

kinetic freeze-out temperature due to mass and flow effects

[9, 10]. Both the chemical freeze-out and effective tem-

peratures in central nucleus–nucleus collisions are larger

than those in peripheral collisions due to more violent

interactions occurring in central collisions. In fact, central

collisions contain more nucleons, and peripheral collisions

contain less nucleons. Usually, there are small dissents in

the extractions of chemical freeze-out temperature and

effective temperature. As for the extraction of kinetic
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freeze-out temperature, the situations are largely non-

uniform.

Currently, four main methods are used in the extraction

of kinetic freeze-out temperature, T0, which are (1) the

Blast-Wave model with Boltzmann–Gibbs statistics (the

BGBW model) [11–13], (2) the Blast-Wave model with

Tsallis statistics (the TBW model) [14], (3) the Tsallis

distribution with flow effect (the improved Tsallis distri-

bution) [15, 16], and (4) the intercept in T ¼ T0 þ am0 (the

alternative method) [12, 17–20], where m0 denotes the rest

mass and T denotes the effective temperature which can be

obtained by different distribution functions. In detail, the

alternative method can be divided into a few sub-methods

due to different distributions being used. Generally, we are

inclined to use the standard and Tsallis distributions in the

alternative method due to the standard distribution being

closest to the ideal gas model in thermodynamics, and the

Tsallis distribution describing a wide spectrum which

needs a two- or three-component standard distribution to be

fitted [21].

The kinetic freeze-out temperature, T0, and the mean

transverse radial flow velocity, bT, can be simultaneously

extracted by the first three methods. The alternative method

needs further treatments in extracting the flow velocity. In

our recent works [22–24], the mean transverse flow

velocity, bT, is regarded as the slope in the relation

hpTi ¼ hpTi0 þ bTm, where hpTi denotes the mean value of

transverse momenta pT, hpTi0 denotes the mean transverse

momentum in the case of zero flow velocity, and m denotes

the mean moving mass. The mean flow velocity, b, is

regarded as the slope in the relation hpi ¼ hpi0 þ bm,

where hpi denotes the mean value of momenta, p, and hpi0

denotes the mean momentum in the case of zero flow

velocity. Although the mean transverse radial flow and

mean transverse flow are not exactly the same, we use the

same symbol to denote their velocities and neglect the

difference between them. In fact, the mean transverse

radial flow contains only the isotropic flow, and the mean

transverse flow contains both the isotropic and anisotropic

flows. The isotropic flow is mainly caused by isotropic

expansion of the interacting system, and the anisotropic

flow is mainly caused by anisotropic squeeze between two

incoming nuclei.

We are interested in the coincidence and difference

among the four methods in the extractions of T0 and bT. In

this paper, we shall use the four methods to extract T0 and

bT from the pT spectra of identified particles produced in

central and peripheral gold–gold (Au–Au) collisions at the

center-of-mass energy per nucleon pair
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV

(the top RHIC energy) and in central and peripheral lead–

lead (Pb–Pb) collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76 TeV (one of the

LHC energies). The model results on the pT spectra are

compared with the experimental data of the PHENIX [25],

STAR [26, 27], and ALICE Collaborations [28, 29], and

the model results on T0 and bT in different collisions and

by different methods are compared each other.

The rest of this paper is structured as follows. The for-

malism and method are shortly described in Sect. 2.

Results and discussion are given in Sect. 3. Finally, we

summarize our main observations and conclusions in

Sect. 4.

2 Formalism and method

The four methods can be found in related references

[11–20]. To give a whole representation of this paper, we

present directly and concisely the four methods in the

following. In the representation, some quantities such as

the kinetic freeze-out temperature, the mean transverse

(radial) flow velocity, and the effective temperature in

different methods are uniformly denoted by T0, bT and T,

respectively, though different methods correspond to dif-

ferent values. All of the model descriptions are presented at

the mid-rapidity which uses the rapidity y � 0 and results

in coshðyÞ � 1 which appears in some methods. At the

same time, the spin property and chemical potential in the

pT spectra are neglected due to their small influences in

high-energy collisions. This means that we can give up the

Fermi–Dirac and Bose–Einstein distributions and use only

the Boltzmann distribution in the case of considering the

standard distribution.

According to Refs. [11–13], the BGBW model results in

the pT distribution to be

f1ðpTÞ ¼ C1pTmT

Z R

0

rdr�

I0
pT sinhðqÞ

T0

� �

K1

mT coshðqÞ
T0

� �

;

ð1Þ

where C1 is the normalized constant which results in
R1

0
f1ðpTÞdpT ¼ 1, where I0 and K1 are the modified Bessel

functions of the first and second kinds, respectively, mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þ m2

0

p

is the transverse mass, q ¼ tanh�1½bðrÞ� is the

boost angle, bðrÞ ¼ bSðr=RÞn0 is a self-similar flow profile,

bS is the flow velocity on the surface of the thermal source,

r / R is the relative radial position in the thermal source,

and n0 is a free parameter which is customarily chosen to

be 2 [11] due to this quadratic profile resembling the

solutions of hydrodynamics closest [30]. Generally,

bT ¼ ð2=R2Þ
R R

0
rbðrÞdr ¼ 2bS=ðn0 þ 2Þ. In the case of

n0 ¼ 2, as used in Ref. [11], we have bT ¼ 0:5bS [31].

According to Ref. [14], the TBW model results in the pT

distribution to be
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f2ðpTÞ ¼ C2pTmT

Z p

�p
d/

Z R

0

rdr 1þf

q� 1

T0

½mT coshðqÞ � pT sinhðqÞ cosð/Þ�
��q=ðq�1Þ

;

ð2Þ

where C2 is the normalized constant which results in
R1

0
f2ðpTÞdpT ¼ 1, q is an entropy index characterizing the

degree of non-equilibrium, and / denotes the azimuth. In

the case of n0 ¼ 1, as used in Ref. [14], we have bT ¼
2bS=ðn0 þ 2Þ ¼ ð2=3ÞbS due to the same flow profile as in

the BGBW model. We would like to point out that the

index �q=ðq� 1Þ in Eq. (2) replaced � 1=ðq� 1Þ in Ref.

[14] due to q being very close to 1. In fact, the difference

between the results corresponding to �q=ðq� 1Þ and

� 1=ðq� 1Þ are small in the Tsallis distribution [32].

According to Refs. [15, 16], the improved Tsallis dis-

tribution in terms of pT is

f3ðpTÞ ¼ C3 2T0½rI0ðsÞK1ðrÞ � sI1ðsÞK0ðrÞ�f
� ðq� 1ÞT0r

2I0ðsÞ½K0ðrÞ þ K2ðrÞ�
þ 4ðq� 1ÞT0rsI1ðsÞK1ðrÞ
� ðq� 1ÞT0s

2K0ðrÞ½I0ðsÞ þ I2ðsÞ�

þ ðq� 1Þ
4

T0r
3I0ðsÞ½K3ðrÞ þ 3K1ðrÞ�

� 3ðq� 1Þ
2

T0r
2s½K2ðrÞ þ K0ðrÞ�I1ðsÞ

þ 3ðq� 1Þ
2

T0s
2r½I0ðsÞ þ I2ðsÞ�K1ðrÞ

� ðq� 1Þ
4

T0s
3½I3ðsÞ þ 3I1ðsÞ�K0ðrÞ

�

;

ð3Þ

where C3 is the normalized constant which results in
R1

0
f3ðpTÞdpT ¼ 1, r 	 cmT=T0, s 	 cbTpT=T0,

c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
T

q

, and I0�3ðsÞ and K0�3ðrÞ are the modified

Bessel functions of the first and second kinds, respectively.

As for the alternative method [12, 17–20, 22–24], to use

the relations T ¼ T0 þ am0, hpTi ¼ hpTi0 þ bTm, and

hpi ¼ hpi0 þ bm, we can choose the standard and Tsallis

distributions to fit the pT spectra of identified particles

produced in high-energy collisions. Because we give up the

Fermi–Dirac and Bose–Einstein distributions, only the

Boltzmann distribution is used in the case of considering

the standard distribution in the present work. Both the

Boltzmann and Tsallis distributions have more than one

forms. We choose the form of Boltzmann distribution [33]

f4aðpTÞ ¼ C4apTmT exp

�

� mT

T

�

ð4Þ

and the form of Tsallis distribution [32, 33]

f4bðpTÞ ¼ C4bpTmT

�

1 þ q� 1

T
mT

��q=ðq�1Þ
; ð5Þ

where C4a and C4b are the normalized constants which

result in
R1

0
f4aðpTÞdpT ¼ 1 and

R1
0

f4bðpTÞdpT ¼ 1

respectively.

It should be noticed that the above five distributions are

only valid for the spectra in a low-pT range. That is, they

describe only the soft excitation process. Even if for the

soft process, the Boltzmann distribution is not always

enough to fit the pT spectra in some cases. In fact, two- or

three-component Boltzmann distributions can be used if

necessary, in which T is the average weight at the effective

temperatures obtained from different components. We have

f4aðpTÞ ¼
X

l

i¼1

kiC4aipTmT exp �mT

Ti

� �

ð6Þ

and

T ¼
X

l

i¼1

kiTi; ð7Þ

where l ¼ 2 or 3 denotes the number of components, and

ki, C4ai, and Ti denote the contribution ratio (relative con-

tribution or fraction), normalization constant, and effective

temperature related to the i-th component, respectively. As

can be seen in the next section, Eqs. (6) and (7) are not

needed in the present work because only simple component

Boltzmann distribution, i.e. Eq. (4), is used in the analyses.

We present here Eqs. (6) and (7) to point out a possible

application in future.

For the spectra in a wide pT range which contains low

and high pT regions, we have to consider the contribution

of a hard scattering process. Generally, the contribution of

a hard process is parameterized to an inverse power-law

fHðpTÞ ¼ ApT 1 þ pT

p0

� ��n

ð8Þ

which is resulted from the QCD (quantum chromody-

namics) calculation [34–36], where p0 and n are free

parameters, and A is the normalized constant which

depends on p0 and n and results in
R1

0
fHðpTÞdpT ¼ 1.

To describe the spectra in a wide pT range, we can use a

superposition of both contributions of soft and hard pro-

cesses. The contribution of the soft process is described by

one of the BGBW models, the TBW model, the improved

Tsallis distribution, the Boltzmann distribution or two- or

three-component Boltzmann distributions, and the Tsallis

distribution, while the contribution of hard process is

described by the inverse power-law. We have the

superposition

f0ðpTÞ ¼ kfSðpTÞ þ ð1 � kÞfHðpTÞ; ð9Þ
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where k denotes the contribution ratio of the soft process

and results naturally in
R1

0
f0ðpTÞdpT ¼ 1, and fSðpTÞ

denotes one of the five distributions discussed in the four

methods.

It should be noted that Eq. (9) and its components fSðpTÞ
and fHðpTÞ are probability density functions. The experi-

mental quantity of pT distribution has mainly three forms,

dN=dpT, d2N=ðdydpTÞ, and ð2ppTÞ�1
d2N=ðdydpTÞ, where

N denotes the number of particles and dy is approximately

treated as a constant due to it being usually a given and

small value at the mid-rapidity. To connect Eq. (9) with

dN=dpT, we need a normalization constant, N0. To connect

Eq. (9) with d2N=ðdydpTÞ, we need another normalization

constant, N0. To connect Eq. (9) with

ð2ppTÞ�1
d2N=ðdydpTÞ, we have to rewrite Eq. (9) to

f0ðpTÞ=pT ¼ ½kfSðpTÞ þ ð1 � kÞfHðpTÞ�=pT and compare the

right side of the new equation with the data with a new

normalization constant, N0.

3 Results and discussion

Figure 1 presents the transverse momentum spectra,

ð2ppTÞ�1
d2N=ðdydpTÞ, of (a)–(c) positively charged pions

(pþ), positively charged kaons (Kþ), neutral kaons (K0
S

only), and protons (p), as well as (b)–(d) negatively

charged pions (p�), negatively charged kaons (K�), neutral

kaons (K0
S only), and antiprotons (�p) produced in (a)–(b)

central (0–5 and 0–12%) and (c)–(d) peripheral (80–92 and

60–80%) Au–Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV, where the

spectra for different types of particles and for the same or

similar particles in different conditions are multiplied by

different amounts shown in the panels for clarity and

normalization. The closed symbols represent the experi-

mental data of the PHENIX Collaboration measured in the

pseudorapidity range jgj\0:35 [25]. The open symbols

represent the STAR data measured in the rapidity range

jyj\0:5 [26, 27], where the data for Kþ and K� are not

available and the data for K0
S in (a)–(c) and (b)–(d) are the

same. The solid, dashed, dotted, dashed-dotted, and

dashed-dotted-dotted curves are our results calculated by

using the superpositions of (1) the BGBW model (Eq. 1)

and inverse power-law (Eq. 8), (2) the TBW model (Eq. 2)

and inverse power-law, (3) the improved Tsallis distribu-

tion (Eq. 3) and inverse power-law, (4)a the Boltzmann

distribution (Eq. 4) and inverse power-law, as well as (4)b

the Tsallis distribution (Eq. 5) and inverse power-law,

respectively. These different superpositions are also dif-

ferent methods for fitting the data. The values of free

parameters T0, bT, k, p0, and n, normalization constant, N0,

which is used to fit the data by a more accurate method

comparing with Ref. [37], and v2 per degree of freedom

(v2/dof) corresponding to the fit of method (1) are listed in

Table 1; the values of T0, q, bT, k, p0, n, N0, and v2/dof

corresponding to methods (2) and (3) are listed in Tables 2

and 3 respectively; the values of T, k, p0, n, N0, and v2/dof

corresponding to methods (4)a are listed in Table 4; and the

values of T, q, k, p0, n, N0, and v2/dof corresponding to

method (4)b are listed in Table 5. One can see that, in most

cases, all of the considered methods describe approxi-

mately the pT spectra of identified particles produced in

central and peripheral Au–Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 200

GeV.

Figure 2 is the same as Fig. 1, but it shows the spectra,

ð1=NEVÞð2ppTÞ�1
d2N=ðdydpTÞ, (a)–(c) pþ (pþ þ p�), Kþ

(Kþ þ K�), and p (pþ �p), as well as (b)–(d) p� (pþ þ p�),

K� (Kþ þ K�), and �p (pþ �p) produced in (a)–(b) central

(0–5%) and (c)–(d) peripheral (80–90 and 60–80%) Pb–Pb

collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76 TeV, where NEV is on the ver-

tical axis and denotes the number of events, which is

usually omitted. The closed (open) symbols represent the

experimental data of the ALICE Collaboration measured in

jyj\0:5 [28] (in jgj\0:8 for the high pT region and in

jyj\0:5 for the low pT region [29]). The data for pþ þ p�,

Kþ þ K�, and pþ �p in (a)–(c) and (b)–(d) are the same.

One can see that, in most cases, all of the considered

methods describe approximately the pT spectra of identified

particles produced in central and peripheral Pb–Pb colli-

sions at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76 TeV. Because the values of v2/dof in

most cases are greater than 2 and sometimes as large as

20.5, the fits in Figs. 1 and 2 are only approximate and

qualitative. The large values of v2/dof in the present work

are caused by two factors which are the very small errors in

the data and large dispersion between the curve and data in

some cases. It is hard to reduce the values of v2/dof in our

fits.

In the above fits, we have an addition term of inverse

power-law to account for hard process. This part con-

tributes a small fraction to the pT spectra, though the

contribution coverage is wide. In the fitting procedure,

according to the changing tendency of data in a low pT

range from 0 to 2 GeV/c, the part for the soft process can

be well constrained first of all, though the contribution of

the soft process can even reach 3.5 GeV/c. Then, the part

for the hard process can be also constrained conveniently.

In addition, in order to get a set of fitted parameters as

accurately as possible, we use the least square method in

the whole pT coverage. It seems that different fitted

parameters can be obtained in different pT coverages. We

should use a pT coverage as widely as possible, especially

for the extraction of the parameters related to the inverse

power-law because a limited pT coverage can not provide a

good constraint of the inverse power-law and thus can
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easily drive the fitted parameters away from their physical

meanings. In fact, for extractions of the effective temper-

ature and transverse flow velocity which are the main

topics of the present work, a not too wide pT coverage,

such as 0–2� 3 GeV/c, is enough due to the soft process

contributing only in the low pT region and the changing

tendency of data in 0–2 GeV/c that takes part in a main

role.

From the above fits one can see that, as a two-compo-

nent function, Eq. (9) with different soft components can

approximately describe the data in a wide pT coverage. In

addition, in our very recent work [37], we used method (3)

to describe preliminarily the pT spectra up to nearly 20

GeV/c. In another work [38], a two-Boltzmann distribution

was used to describe the pT spectra up to nearly 14 GeV/c.

Generally, different sets of parameters are needed for dif-

ferent data. In particular, as it is pointed out in Ref. [39],

more fitting parameters are needed in order to fit a wider pT

range of particle spectra. In the present work, we fit the

particle spectra in a wide pT range by introducing the

inverse power-law to describe the high pT region. The price

to pay is 3 more parameters are added. In the two-com-

ponent function, the contributions of soft and hard com-

ponents have little effect in constraining respective free

(a) (b)

(c) (d)

Fig. 1 (Color online) Transverse momentum spectra of (a)–(c) pþ,

Kþ, K0
S, and p, as well as (b)–(d) p�, K�, K0

S, and �p produced in (a, b)

central (0–5 and 0–12%) and (c, d) peripheral (80–92 and 60–80%)

Au–Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV, where the spectra for different

types of particles and for the same or similar particles in different

conditions are multiplied by different amounts shown in the panels for

clarity and normalization. The closed symbols represent the

experimental data of the PHENIX Collaboration measured in

jgj\0:35 [25]. The open symbols represent the STAR data measured

in jyj\0:5 [26, 27], where the data for Kþ and K� are not available

and the data for K0
S in (a)–(c) and (b)–(d) are the same. The solid,

dashed, dotted, dashed-dotted, and dashed-dotted-dotted curves are

our results calculated by using methods (1), (2), (3), (4)a, and (4)b,

respectively
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parameters due to different contributive regions, though the

contribution fraction of the two components is the main

role. This results in the pT coverage having a small effect

on T0 and bT. In fact, if we change the boundary of the low

pT region from 2 to 3 or 3.5 GeV/c, the variations of

parameters can be neglected due to the tendency of the

curve being mainly determined by the data in 0–2 GeV/c.

Meanwhile, the data in 2–3.5 GeV/c obey naturally the

tendency of the curve due to also the contribution or

revision of the hard component. In other words, because of

the revision of the hard component, the values of T0 and bT

are not sensitive to the boundary of low pT region.

Although different pT coverages obtained in different

conditions can drive different fitted curves, these differ-

ences appear mainly in the high pT region and do not lar-

gely effect the extraction of T0 and bT. In any case, we

always use the last square method to extract the fitted

parameters. In fact, the method used by us has the mini-

mum randomness in the extractions of the fitted

parameters.

It should be noted that although the conventional

BGBW and TBW models have only 2–3 parameters to

describe the pT shape and usually fit several spectra

simultaneously to reduce the correlation of the parameters,

they seem to cover non-simultaneity of the kinetic freeze-

outs of different particles. In the present work, although we

use 3 more parameters to fit each spectrum individually, we

observe an evidence of the mass dependent differential

kinetic freeze-out scenario or multiple kinetic freeze-outs

scenario [4, 16, 23]. The larger the temperature (mass) is,

the earlier the particle produces. The average temperature

(flow velocity and entropy index) of the kinetic freeze-outs

for different particles is obtained by weighing different T0

(bT and q), where the weight factor is the normalization

constant of each pT spectrum. In the case of using the

average temperature (flow velocity and entropy index) to fit

the pion, kaon, and proton simultaneously to better con-

strain the parameters, larger values of v2/dof are obtained.

Based on the descriptions of the pT spectra, the first

three methods can get T0 and bT, though the values of

parameters are possibly inharmonious due to different

Table 4 Values of free parameters (T, k, p0, and n ), the normalization constant (N0), and v2/dof corresponding to the fits of method (4)a in

Figs. 1 and 2

Figures Cent. Main Part. T (GeV) k p0 (GeV/c) n N0 v2/dof

1(a) Central pþ 0.167 ± 0.004 0.765 ± 0.008 2.095 ± 0.068 11.295 ± 0.133 519.268 ± 39.582 9.637

Kþ 0.235 ± 0.004 0.752 ± 0.008 2.915 ± 0.068 12.335 ± 0.185 49.650 ± 2.890 12.847

p 0.302 ± 0.005 0.983 ± 0.005 2.785 ± 0.066 9.475 ± 0.176 7.744 ± 0.267 2.217

1(b) Central p� 0.167 ± 0.004 0.765 ± 0.008 2.095 ± 0.068 11.295 ± 0.133 519.297 ± 39.582 9.068

K� 0.235 ± 0.004 0.750 ± 0.008 2.915 ± 0.068 12.335 ± 0.185 47.297 ± 2.893 13.624

�p 0.296 ± 0.005 0.981 ± 0.005 2.715 ± 0.066 9.675 ± 0.176 6.516 ± 0.272 6.399

1(c) Peripheral pþ 0.131 ± 0.004 0.799 ± 0.008 3.238 ± 0.089 13.892 ± 0.132 8.602 ± 0.676 4.243

Kþ 0.185 ± 0.004 0.702 ± 0.008 3.483 ± 0.086 13.083 ± 0.146 0.556 ± 0.035 6.799

p 0.209 ± 0.005 0.822 ± 0.008 4.606 ± 0.106 14.866 ± 0.155 0.173 ± 0.012 0.955

1(d) Peripheral p� 0.131 ± 0.004 0.799 ± 0.008 3.238 ± 0.089 13.892 ± 0.132 8.602 ± 0.676 4.115

K� 0.185 ± 0.004 0.702 ± 0.008 3.483 ± 0.086 13.083 ± 0.146 0.559 ± 0.035 6.284

�p 0.209 ± 0.005 0.822 ± 0.008 4.606 ± 0.106 15.279 ± 0.165 0.139 ± 0.012 0.627

2(a) Central pþ 0.215 ± 0.004 0.828 ± 0.008 1.375 ± 0.068 7.315 ± 0.128 679.491 ± 44.189 16.706

Kþ 0.299 ± 0.005 0.972 ± 0.008 2.945 ± 0.090 7.685 ± 0.132 57.722 ± 5.536 1.889

p 0.413 ± 0.005 0.993 ± 0.002 4.975 ± 0.112 8.725 ± 0.146 8.864 ± 0.467 2.600

2(b) Central p� 0.215 ± 0.004 0.828 ± 0.008 1.375 ± 0.068 7.315 ± 0.128 679.491 ± 44.189 16.821

K� 0.299 ± 0.005 0.972 ± 0.008 2.945 ± 0.090 7.685 ± 0.132 57.722 ± 5.536 2.052

�p 0.413 ± 0.005 0.993 ± 0.002 4.975 ± 0.112 8.725 ± 0.146 8.864 ± 0.467 2.433

2(c) Peripheral pþ 0.152 ± 0.004 0.802 ± 0.008 2.012 ± 0.065 8.279 ± 0.116 9.713 ± 0.616 15.656

Kþ 0.219 ± 0.004 0.803 ± 0.009 2.035 ± 0.092 7.595 ± 0.134 0.822 ± 0.052 5.123

p 0.291 ± 0.005 0.805 ± 0.008 2.285 ± 0.096 8.365 ± 0.142 0.190 ± 0.017 3.545

2(d) Peripheral p� 0.152 ± 0.004 0.802 ± 0.008 2.012 ± 0.065 8.279 ± 0.116 9.713 ± 0.616 15.657

K� 0.219 ± 0.004 0.803 ± 0.009 2.035 ± 0.092 7.595 ± 0.134 0.822 ± 0.052 5.238

�p 0.296 ± 0.005 0.805 ± 0.008 2.285 ± 0.096 8.365 ± 0.142 0.188 ± 0.017 3.391
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methods. In particular, the value of T0 obtained by method

(1) in peripheral collisions is larger than that in central

collisions, which is different from methods (2) and (3)

which obtain an opposite result. According to the con-

ventional treatment in Refs. [11, 14], the values of bT

obtained by methods (1) and (2) in peripheral collisions are

taken to be nearly zero, which are different from method

(3) which obtains a value of about 0.6c in both central and

peripheral collisions.

To obtain the values of T0, bT, and b by methods (4)a

and (4)b, we analyze the values of T presented in Tables 4

and 5, and calculate hpTi, hpi, and m based on the values of

parameters listed in Tables 4 and 5. In the calculations

performed from pT to hpi and m by the Monte Carlo

method, an isotropic assumption in the rest frame of

emission source is used [22–24]. In particular, m is in fact

the mean energy, h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
0

p

i.
The relations between T and m0, hpTi and m, as well as

hpi and m are shown in Figs. 3, 4 and 5, respectively,

where panels (a) and (b) correspond to methods (4)a and

(4)b which use the Boltzmann and Tsallis distributions,

respectively. Different symbols represent central (0–5 and

0–12%) and peripheral (80–92 and 60–80%) Au–Au col-

lisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV and central (0–5%) and

peripheral (80–90 and 60–80%) Pb–Pb collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76 TeV respectively, where the centralities 0–5

and 0–12%, 80–92 and 60–80%, as well as 80–90 and 60–

80% can be combined to 0–12, 60–92, and 60–90%,

respectively. The symbols in Fig. 3 represent values of T

listed in Tables 4 and 5 for a different m0. The symbols in

Figs. 4 and 5 represent values of hpTi and hpi for different

m respectively, which are calculated due to the parameters

listed in Tables 4 and 5 and the isotropic assumption in the

rest frame of the emission source. The solid and dashed

lines in the three figures are the results fitted by the least

square method for the positively and negatively charged

particles, respectively. The values of intercepts, slopes, and

v2/dof are listed in Tables 6 and 7 which correspond to

methods (4)a and (4)b respectively. One can see that, in

most cases, the mentioned relations are described by a

Table 5 Values of free parameters (T, q, k, p0, and n), the normalization constant (N0), and v2/dof corresponding to the fits of method (4)b in

Figs. 1 and 2

Figures Cent. Main

Part.

T (GeV) q k p0 (GeV/c) n N0 v2/

dof

1(a) Central pþ 0.130 ± 0.004 1.073 ± 0.003 0.994 ± 0.003 1.775 ± 0.069 8.115 ± 0.148 508.830 ± 43.650 1.731

Kþ 0.184 ± 0.005 1.050 ± 0.004 0.984 ± 0.005 1.075 ± 0.058 6.775 ± 0.135 45.687 ± 2.962 4.354

p 0.274 ± 0.004 1.015 ± 0.003 0.988 ± 0.003 2.485 ± 0.088 8.775 ± 0.152 8.211 ± 0.194 3.268

1(b) Central p� 0.130 ± 0.004 1.073 ± 0.003 0.994 ± 0.003 1.775 ± 0.069 8.115 ± 0.148 508.830 ± 43.650 1.648

K� 0.184 ± 0.005 1.050 ± 0.004 0.982 ± 0.005 1.075 ± 0.058 6.775 ± 0.135 42.366 ± 2.868 2.951

�p 0.272 ± 0.004 1.012 ± 0.003 0.992 ± 0.003 2.985 ± 0.090 9.375 ± 0.159 6.764 ± 0.189 7.806

1(c) Peripheral pþ 0.105 ± 0.004 1.085 ± 0.005 0.918 ± 0.005 1.985 ± 0.075 10.032 ± 0.155 8.344 ± 0.606 1.855

Kþ 0.137 ± 0.004 1.079 ± 0.004 0.990 ± 0.006 1.983 ± 0.075 7.853 ± 0.136 0.488 ± 0.033 3.574

p 0.192 ± 0.005 1.028 ± 0.006 0.853 ± 0.008 2.006 ± 0.056 9.466 ± 0.155 0.175 ± 0.012 1.165

1(d) Peripheral p� 0.105 ± 0.004 1.085 ± 0.005 0.918 ± 0.005 1.985 ± 0.075 10.032 ± 0.155 8.344 ± 0.606 1.635

K� 0.137 ± 0.004 1.079 ± 0.004 0.990 ± 0.006 1.983 ± 0.075 7.853 ± 0.136 0.466 ± 0.030 2.604

�p 0.192 ± 0.005 1.028 ± 0.006 0.853 ± 0.008 2.106 ± 0.059 9.766 ± 0.158 0.140 ± 0.012 0.715

2(a) Central pþ 0.170 ± 0.005 1.066 ± 0.005 0.992 ± 0.007 2.775 ± 0.062 7.275 ± 0.185 711.631 ± 55.063 6.847

Kþ 0.264 ± 0.006 1.030 ± 0.005 0.993 ± 0.002 3.575 ± 0.108 7.135 ± 0.203 62.036 ± 5.422 0.548

p 0.409 ± 0.006 1.002 ± 0.001 0.993 ± 0.002 4.975 ± 0.112 8.725 ± 0.206 8.968 ± 0.417 2.813

2(b) Central p� 0.170 ± 0.005 1.066 ± 0.005 0.992 ± 0.007 2.775 ± 0.062 7.275 ± 0.185 711.631 ± 55.063 6.813

K� 0.264 ± 0.006 1.030 ± 0.005 0.993 ± 0.002 3.575 ± 0.108 7.135 ± 0.203 62.036 ± 5.422 0.654

�p 0.409 ± 0.006 1.002 ± 0.001 0.993 ± 0.002 4.975 ± 0.112 8.725 ± 0.206 8.968 ± 0.417 2.651

2(c) Peripheral pþ 0.117 ± 0.004 1.099 ± 0.005 0.972 ± 0.005 3.003 ± 0.098 8.335 ± 0.196 10.635 ± 0.595 7.995

Kþ 0.173 ± 0.005 1.069 ± 0.005 0.905 ± 0.006 2.375 ± 0.071 7.575 ± 0.192 0.725 ± 0.043 1.674

p 0.263 ± 0.005 1.035 ± 0.005 0.911 ± 0.006 1.875 ± 0.065 7.265 ± 0.146 0.139 ± 0.009 2.285

2(d) Peripheral p� 0.117 ± 0.004 1.099 ± 0.005 0.972 ± 0.005 3.003 ± 0.098 8.335 ± 0.196 10.635 ± 0.595 7.904

K� 0.173 ± 0.005 1.069 ± 0.005 0.905 ± 0.006 2.375 ± 0.071 7.575 ± 0.192 0.725 ± 0.043 1.875

�p 0.263 ± 0.005 1.035 ± 0.005 0.911 ± 0.006 1.875 ± 0.065 7.265 ± 0.146 0.144 ± 0.009 2.255
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linear function. In particular, the intercept in Fig. 3 is

regarded as T0, and the slopes in Figs. 4 and 5 are regarded

as bT and b, respectively. The values of T, T0, bT, b, and m

are approximately independent of isospin.

To compare the values of key parameters obtained by

different methods for different centralities (both central and

peripheral collisions), Figs. 6 and 7 show T0 and bT

respectively, where panels (a) and (b) correspond to the

results for central (0–5 and 0–12%) and peripheral (80–92

and 60–80%) Au–Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV and

central (0–5%) and peripheral (80–90 and 60–80%) Pb–Pb

collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76 TeV, respectively. The closed

and open symbols represent positively and negatively

charged particles respectively, which are quoted from

Tables 1, 2, 3, 6 and 7 which correspond to methods (1),

(2), (3), (4)a, and (4)b, respectively. In particular, the values

of T0 and bT in the first three methods are obtained by

weighing different particles. One can see that, by using

method (1), the value of T0 in central collisions is smaller

than that in peripheral collisions, and other methods present

a larger T0 in central collisions. Methods (1) and (2) show a

nearly zero bT in peripheral collisions according to Refs.

[11, 14], while other methods show a considerable bT in

both central and peripheral collisions.

To explain the inconsistent results in T0 and bT for

different methods, we re-examine the first two methods. It

(a) (b)

(c) (d)

Fig. 2 (Color online) Same as Fig. 1, but showing the spectra of (a)–

(c) pþ (pþ þ p�), Kþ (Kþ þ K�), and p (pþ �p), as well as (b)–(d)

p� (pþ þ p�), K� (Kþ þ K�), and �p (pþ �p) produced in (a, b)

central (0–5%) and (c, d) peripheral (80–90 and 60–80%) Pb–Pb

collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76 TeV, where NEV on the vertical axis

denotes the number of events, which is usually omitted. The closed

(open) symbols represent the experimental data of the ALICE

Collaboration measured in jyj\0:5 [28] (in jgj\0:8 for high pT

region and in jyj\0:5 for low pT region [29]). The data for pþ þ p�,

Kþ þ K�, and pþ �p in (a)–(c) and (b)–(d) are the same
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should be noticed that the same flow profile function,

bðrÞ ¼ bSðr=RÞ
n0 , and the same transverse flow velocity,

bT ¼ 2bS=ðn0 þ 2Þ, are used in the first two methods,

though n0 ¼ 2 is used in method (1) [11] and n0 ¼ 1 is

used in method (2) [14] with the conventional treatment.

As an insensitive quantity, although the radial size R of the

thermal source in central collisions can be approximately

regarded as the radius of a collision nucleus and in

peripheral collisions R is not zero due to a few participant

nucleons taking part in the interactions in which we can

take approximate R to be 2.5 fm, both methods (1) and (2)

use a nearly zero bT in peripheral collisions [11, 14]. If we

consider a non-zero bT in peripheral collisions for methods

(1) and (2), the situation will be changed.

(a) (b)

Fig. 3 (Color online) Relations between T and m0. Different symbols

represent central (0–5 and 0–12%) and peripheral (80–92 and 60–

80%) Au–Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV and central (0–5%) and

peripheral (80–90 and 60–80%) Pb–Pb collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76

TeV respectively. The symbols presented in panels (a) and (b)

represent the results listed in Tables 4 and 5 and correspond to the fits

of Boltzmann and Tsallis distributions, respectively, where the closed

and open symbols show the results of positively and negatively

charged particles respectively. The solid and dashed lines are the

results fitted by the least square method for the positively and

negatively charged particles respectively, where the intercepts are

regarded as T0

(a) (b)

Fig. 4 (Color online) Same as Fig. 3, but showing the relations

between hpTi and m, and the slopes are regarded as bT. The symbols

presented in panels (a) and (b) represent the results obtained

according to the fits of Boltzmann and Tsallis distributions, respec-

tively, where the values of parameters are listed in Tables 4 and 5,

respectively
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By using a non-zero bT in peripheral collisions for

methods (1) and (2), we re-analyze the data presented in

Figs. 1 and 2. At the same time, to see the influences of

different n0 in the self-similar flow profile, we refit the

mentioned pT spectra by the first two methods with n0 ¼ 1

and 2 synchronously. The results re-analyzed by us are

(a) (b)

Fig. 5 (Color online) Same as Fig. 3, but showing the relations

between hpi and m, and the slopes are regarded as b. The symbols

presented in panels (a) and (b) represent the results obtained

according to the fits of Boltzmann and Tsallis distributions, respec-

tively, where the values of parameters are listed in Tables 4 and 5

respectively

Table 6 Values of free

parameters (intercept and slope)

and v2/dof corresponding to the

relations obtained from the fits

of the Boltzmann distribution in

Figs. 3a, 4a and 5a

Figures Relation Type and main particles Centrality Intercept Slope v2/dof

3(a) T � m0 Au–Au positive Central 0.147 ± 0.007 0.168 ± 0.012 2.625

Negative Central 0.149 ± 0.010 0.160 ± 0.016 4.618

Positive Peripheral 0.125 ± 0.017 0.096 ± 0.028 14.910

Negative Peripheral 0.125 ± 0.017 0.096 ± 0.028 14.910

Pb–Pb positive Central 0.179 ± 0.003 0.248 ± 0.005 0.424

Negative Central 0.179 ± 0.003 0.248 ± 0.005 0.424

Positive Peripheral 0.130 ± 0.005 0.174 ± 0.008 1.142

Negative Peripheral 0.128 ± 0.003 0.180 ± 0.005 0.394

4(a) hpTi � m Au–Au positive Central 0.147 ± 0.018 0.436 ± 0.013 0.864

Negative Central 0.152 ± 0.023 0.430 ± 0.017 1.312

Positive Peripheral 0.163 ± 0.041 0.362 ± 0.036 4.734

Negative Peripheral 0.163 ± 0.041 0.362 ± 0.036 4.734

Pb–Pb positive Central 0.133 ± 0.004 0.492 ± 0.002 0.024

Negative Central 0.133 ± 0.004 0.492 ± 0.002 0.024

Positive Peripheral 0.130 ± 0.013 0.438 ± 0.010 0.499

Negative Peripheral 0.125 ± 0.010 0.443 ± 0.007 0.285

5(a) hpi � m Au–Au positive Central 0.230 ± 0.028 0.683 ± 0.021 0.865

Negative Central 0.239 ± 0.035 0.673 ± 0.026 1.313

Positive Peripheral 0.255 ± 0.064 0.568 ± 0.056 4.746

Negative Peripheral 0.255 ± 0.064 0.568 ± 0.056 4.746

Pb–Pb Positive Central 0.209 ± 0.006 0.771 ± 0.003 0.024

Negative Central 0.209 ± 0.006 0.771 ± 0.003 0.024

Positive Peripheral 0.203 ± 0.020 0.686 ± 0.015 0.496

Negative Peripheral 0.196 ± 0.015 0.694 ± 0.011 0.283
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shown in Figs. 8 and 9 which correspond to 200 GeV Au–

Au and 2.76 TeV Pb–Pb collisions respectively. The data

points are the same as Figs. 1 and 2 [25–29]. The dotted,

solid, dashed, and dotted-dashed curves correspond to the

results of method (1) with n0 ¼ 1 and 2, and of method (2)

with n0 ¼ 1 and 2, respectively, where the results of

Table 7 Values of free

parameters (intercept and slope)

and v2/dof corresponding to the

relations obtained from the fits

of the Tsallis distribution in

Figs. 3b, 4b and 5b

Figures Relation Type and main particles Centrality Intercept Slope v2/dof

3(b) T � m0 Au–Au positive Central 0.101 ± 0.009 0.181 ± 0.014 3.059

Negative Central 0.102 ± 0.008 0.179 ± 0.013 2.533

Positive Peripheral 0.087 ± 0.006 0.110 ± 0.009 1.708

Negative Peripheral 0.087 ± 0.006 0.110 ± 0.009 1.708

Pb–Pb positive Central 0.124 ± 0.011 0.300 ± 0.017 2.877

Negative Central 0.124 ± 0.011 0.300 ± 0.017 2.877

Positive Peripheral 0.088 ± 0.008 0.184 ± 0.013 2.258

Negative Peripheral 0.088 ± 0.008 0.184 ± 0.013 2.258

4(b) hpTi � m Au–Au positive Central 0.154 ± 0.013 0.427 ± 0.010 0.270

Negative Central 0.160 ± 0.018 0.420 ± 0.013 0.495

Positive Peripheral 0.174 ± 0.049 0.373 ± 0.040 4.116

Negative Peripheral 0.174 ± 0.049 0.373 ± 0.040 4.116

Pb–Pb positive Central 0.131 ± 0.001 0.493 ± 0.001 0.001

Negative Central 0.131 ± 0.001 0.493 ± 0.001 0.001

Positive Peripheral 0.140 ± 0.011 0.445 ± 0.008 0.148

Negative Peripheral 0.140 ± 0.011 0.445 ± 0.008 0.148

5(b) hpi � m Au–Au positive Central 0.240 ± 0.021 0.670 ± 0.015 0.269

Negative Central 0.251 ± 0.028 0.659 ± 0.021 0.494

Positive Peripheral 0.272 ± 0.077 0.584 ± 0.063 4.111

Negative Peripheral 0.272 ± 0.077 0.584 ± 0.063 4.111

Pb–Pb positive Central 0.205 ± 0.002 0.772 ± 0.001 0.001

Negative Central 0.205 ± 0.002 0.772 ± 0.001 0.001

Positive Peripheral 0.220 ± 0.017 0.697 ± 0.012 0.148

Negative Peripheral 0.220 ± 0.017 0.697 ± 0.012 0.148

(a) (b)

Fig. 6 (Color online) Comparisons of T0 obtained by different

methods for different centralities (C), where the values of T0 in the

first three methods are obtained by weighing different particles.

Panels (a) and (b) correspond to the results for central (0–5 and 0–

12%) and peripheral (80–92 and 60–80%) Au–Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV and central (0–5%) and peripheral (80–90 and 60–

80%) Pb–Pb collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76 TeV respectively
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method (1) with n0 ¼ 2 and of method (2) with n0 ¼ 1 in

central collisions are the same as Figs. 1 and 2. The values

of related parameters and v2/dof are listed in Tables 8 and

9, where the parameters for method (1) with n0 ¼ 2 and for

method (2) with n0 ¼ 1 in central collisions repeat those in

Tables 1 and 2, which are not listed again. One can see

that, after the re-examination, the values of T0 in central

collisions are larger than those in peripheral collisions. The

values of bT in peripheral collisions are no longer zero.

These new results are consistent with other methods.

To give new comparisons for T0 and bT, the new results

obtained by the first two methods are shown in Figs. 10

and 11 respectively, where the results corresponding to

method (1) for central collisions with n0 ¼ 2 and to method

(2) for central collisions with n0 ¼ 1 are the same as those in

Figs. 6 and 7. Combining Figs. 6, 7, 10 and 11, one can see

that the four methods show approximately the consistent

results. These comparisons enlighten us to use the first two

methods in peripheral collisions by a non-zero bT. After the

re-examination for bT in peripheral collisions, we obtain a

relatively larger T0 in central collisions for the four methods.

In particular, the parameter T0 at the LHC is slightly larger

than or nearly equal to that at the RHIC, not only for central

collisions but also for peripheral collisions. Except for

method (3), the methods show a slightly larger or nearly

invariant bT in central collisions when compared with

peripheral collisions, and when LHC comparing data from

LHC with the RHIC, while method (3) shows nearly the same

bT in different centralities and at different energies.

We would like to point out that, in the re-examination

for bT in methods (1) and (2), we have assumed both bT in

central and peripheral collisions to be non-zero. In most

cases [11, 14], both the conventional BGBW and TBW

models used non-zero bT in central collisions and zero (or

almost zero) bT in peripheral collisions. In the case of using

a non-zero or zero (or almost zero) bT in peripheral colli-

sions, we can obtain a relatively smaller or larger T0

compared with central collisions. Indeed, the selection of

bT in peripheral collisions is an important issue in both the

BGBW and TBW models. In fact, bT is a sensitive quantity

which can affect T0. The larger bT that is selected, the

smaller T0 that is needed. The main correlation is between

bT and T0, and the effect of n0 is very small. In Figs. 1 and

2, we have used a zero bT for peripheral collisions and

obtained a harmonious result on the relative size of T0 with

Ref. [28] in which bT (0.35c) for peripheral collisions is

nearly a half of that (0.65c) for central collisions, and n0 is

also different from ours. While in Figs. 8 and 9, we have

used a non-zero and slightly smaller bT for peripheral

collisions and obtained a different result from Ref. [28].

In order to make the conclusion more convincing, we

can only fit the low pT region of the particle spectra using

the four methods with the same pT cut to decrease the

number of free fitting parameters. When the pT cut

increases from 2 to 3.5 GeV/c, T0 (or T) increases or both

T0 (or T) and bT increase slightly. The relative size of T0

(bT) obtained above for central and peripheral collisions is

unchanged. In particular, bT is also a sensitive quantity. For

peripheral collisions, a zero or non-zero bT in the first two

methods can give different results. In our opinion, in cen-

tral and peripheral collisions, it depends on bT if we want

to determine which T0 is larger. We are inclined to use a

non-zero bT for peripheral collisions due to the small

system which is similar to peripheral collisions in number

of participant nucleons also showing collective expansion

[40].

(a) (b)

Fig. 7 (Color online) Same as Fig. 6, but showing the comparisons of bT obtained by different methods for different centralities
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Compared with peripheral collisions, the larger T0 in

central collisions renders more deposition of collision

energy and higher excitation of the interacting system due

to more participating nucleons taking part in the violent

collisions. Compared with the top RHIC energy, the larger

T0 at the LHC energy also renders more deposition of

collision energy and higher excitation of interacting system

due to higher
ffiffiffiffiffiffiffi

sNN
p

at the LHC. At the same time, from the

top RHIC to the LHC energies, a nearly invariant T0

reflects the limiting deposition of collision energy. Com-

pared with peripheral collisions, the slightly larger or

nearly the same bT in central collisions renders similar

expansion in both the centralities. At the same time, at the

top RHIC and LHC energies, the two systems also show

similar expansion due to similar bT.

It should be noted that, although Eq. (2) [14] does not

implement the azimuthal integral over the freeze-out

surface which gives rise to the modified Bessel functions

in Eq. (1), it does not affect the extractions of kinetic

freeze-out parameters due to the application of numerical

integral. Although Eq. (3) [15, 16] assumes a single,

infinitesimally thin shell of fixed flow velocity and also

does not perform the integral over the freeze-out surface,

it can extract the mean trend of kinetic freeze-out

parameters. As for the alternative method

[12, 17–20, 22–24], it assumes non-relativistic flow

velocities in the expressions used to extract the freeze-out

parameters, which is the case that bT is indeed not too

large at the top RHIC and LHC energies.

(a) (b)

(c) (d)

Fig. 8 (Color online) Reanalyzing the transverse momentum spectra

[25–27] collected in Fig. 1 by the first two methods. The dotted, solid,

dashed, and dotted-dashed curves are our results calculated by using

method (1) with n0 ¼ 1 and 2, as well as method (2) with n0 ¼ 1 and

2, respectively. The results for central collisions obtained by method

(1) with n0 ¼ 2 and by method (2) with n0 ¼ 1 are the same as Fig. 1

82 Page 16 of 22 H.-L. Lao et al.

123



4 Conclusion

We summarize here our main observations and

conclusions.

(a) The pT spectra of p�, K�, K0
S, p, and �p produced in

central (0–5 and 0–12%) and peripheral (80–92 and

60–80%) Au–Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV and

in central (0–5%) and peripheral (80–90 and 60–

80%) Pb–Pb collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76 TeV have

been analyzed by a few different superpositions in

which the distributions related to the extractions of

T0 and bT are used for the soft component and the

inverse power-law is used for the hard component.

We have used five distributions for the soft compo-

nent, (1) the Blast-Wave model with Boltzmann–

Gibbs statistics, (2) the Blast-Wave model with

Tsallis statistics, (3) the Tsallis distribution with flow

effect, (4)a the Boltzmann distribution, and (4)b the

Tsallis distribution. The first three distributions are

in fact three methods for the extractions of T0 and

bT. The last two distributions are used in the fourth

method, i.e. the alternative method.

(b) The experimental data measured by the PHENIX,

STAR, and ALICE Collaborations are fitted by the

model results. Our calculations show that the

parameter T0 obtained by method (1) with the

conventional treatment for central collisions is

smaller than that for peripheral collisions, which is

inconsistent with the results obtained by other model

methods. In the conventional treatment, the param-

eter bT in peripheral collisions is taken to be nearly

(a) (b)

(c) (d)

Fig. 9 (Color online) Same as Fig. 8, but reanalyzing the transverse momentum spectra [28, 29] collected in Fig. 2 by the first two methods. The

results for central collisions obtained by method (1) with n0 ¼ 2 and by method (2) with n0 ¼ 1 are the same as Fig. 2
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zero, which results in a larger T0 than normal. By

using the conventional treatment, both methods (1)

and (2) show a nearly zero bT value in the peripheral

collisions according to Refs. [11, 14], while other

methods show a considerable bT in both central and

peripheral collisions.

(c) In central and peripheral collisions, we have to select

a suitable bT so that we can determine which T0 is

larger. We are inclined to use a non-zero bT for

peripheral collisions due to the small system also

showing collective expansion. We have given a re-

examination for bT in peripheral collisions in

methods (1) and (2) in which bT is taken to be

�ð0:40 � 0:07Þc. By using a non-zero bT, the first

two methods show approximately consistent results

with other methods, not only for T0 but also for bT,

though method (3) gives a larger bT. We have

uniformly obtained a larger T0 in central collisions

(a) (b)

Fig. 10 (Color online) Comparisons of T0 obtained by the first two

methods with n0 ¼ 1 and 2 for different centralities. a and b
correspond to the results for central (0–5 and 0–12%) and peripheral

(80–92 and 60–80%) Au–Au collisions at
ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV and

central (0–5%) and peripheral (80–90 and 60–80%) Pb–Pb collisions

at
ffiffiffiffiffiffiffi

sNN
p ¼ 2:76 TeV, respectively. The values of T0 are obtained by

weighing different particles and the results for central collisions

obtained by method (1) with n0 ¼ 2 and by method (2) with n0 ¼ 1

are the same as Fig. 6

(a) (b)

Fig. 11 (Color online) Same as Fig. 10, but showing the comparisons of bT obtained by the first two methods for different centralities. The

results for central collisions obtained by method (1) with n0 ¼ 2 and by method (2) with n0 ¼ 1 are the same as Fig. 7
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by the four methods. In particular, the parameter T0

at the LHC is larger than or equal to that at the

RHIC. Except for method (3), the methods show a

slightly larger or nearly invariant bT in central

collisions compared to peripheral collisions, and at

the LHC compared with the RHIC.

(d) The new results obtained by the widely used Blast-

Wave model with Boltzmann–Gibbs or Tsallis

statistics are in agreement with those obtained by

the newly used alternative method which uses the

Boltzmann or Tsallis distribution. This consistency

confirms the validity of the alternative method. The

result that the central collisions have a larger T0

renders more deposition of collision energy and

higher excitation of the interacting system due to

more participating nucleons taking part in the violent

collisions. From the RHIC to LHC, the slightly

increased or nearly invariant T0 renders the limiting

or maximum deposition of collisions energy. From

central to peripheral collisions and from the RHIC to

LHC, the slightly increased or nearly invariant bT

renders the limiting or maximum blast of the

interacting system.
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