
NUCLEAR SCIENCE AND TECHNIQUES 25, 020103 (2014)

EPICS data archiver at SSRF beamlines

HU Zheng (胡正),1, 2 MI Qing-Ru (米清茹),1 ZHEN Li-Fang (郑丽芳),1 and LI Zhong (黎忠)1, ∗

1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2University of Chinese Academy of Sciences, Beijing 100049, China

(Received August 23, 2013; accepted in revised form November 26, 2013; published online March 20, 2014)

The control system of SSRF (Shanghai Synchrotron Radiation Facility) is based on EPICS (Experimental
Physics and Industrial Control System). Operation data storage for synchrotron radiation facility is important
for its status monitoring and analysis. At SSRF, operation data used to be index files recorded by traditional
EPICS Channel Archiver. Nevertheless, index files are not suitable for long-term maintenance and difficult for
data analysis. Now, RDB Channel Archiver and MySQL are used for SSRF beamline operation data archiving,
so as to promote the data storage reliability and usability. By applying a new uploading mechanism to RDB
Channel Archiver, its writing performance is improved. A web-based GUI (Graphics User Interface) is also
developed to make it easier to access database.

Keywords: Database, RDB Channel Archiver, Markov Auto-Complete, EPICS, SSRF

DOI: 10.13538/j.1001-8042/nst.25.020103

I. INTRODUCTION

Shanghai Synchrotron Radiation Facility (SSRF) is capa-
ble of building a number of beamlines [1] and experimental
stations for physical, chemical, and biological studies. For
each beamline, over 200 signals that provide information of
the status of vacuum, temperature, cooling water flow etc.
should be monitored and archived accurately and reliably.
This is also demanded for the SSRF accelerators, hence a
great quantities of signals need to be archived.

At SSRF, the control system software is based on EPICS
and the Channel Archiver is used to archive the operation
data. The RDB Channel Archiver is a newly upgraded ver-
sion of Channel Archiver. It is implemented by Java and
uses relational database to provides better data storage than
the original index files. MySQL, Oracle and PostgreSQL are
three kinds of relational database supported by RDB Chan-
nel Archiver. Actually, RDB Channel Archiver communi-
cates with the database by using JDBC (Java Database Con-
nectivity) to guarantee a reliable connection, it supports any
database which has JAVA API.

II. EPICS STRUCTURE

EPICS is a set of Open Source software tools, libraries and
applications. It is widely used to create distributed soft real-
time control systems for scientific instruments [2]. As Fig. 1
shows, it mainly consists of three parts: IOC (Input/Output
Controller), OPI (Operation Interface), and CA (Channel Ac-
cess) [3]. CA is a set of communication protocols based on
TCP/IP. It uses multiple clients to multiple servers access
method. And an important data unit of CA is PV (Process
Variable), which usually represents a signal. To establish a
data access channel, its client broadcasts across the network

∗ Corresponding author, lizhong@sinap.ac.cn

for a targeted PV, and the IOC holding the PV will response
it and establish a channel, which enables the client to read
values from the PV, write values to the PV, and monitor the
PV.

Fig. 1. EPICS framework.

III. RDB CHANNEL ARCHIVER AND ITS
IMPROVEMENT

A. Structure of RDB Channel Archiver

RDB Channel Archiver is implemented to make an effec-
tive data archive on SSRF beamlines. It is a major part of
the CCS (Control System Studio), an open source toolset de-
veloped under Eclipse by Kay Kasemir from the Oak Ridge
National Laboratory [4] of USA. With the main goal of trans-
mitting PV data from IOC to the relational database, RDB
Channel Archiver uses the JCA to connect EPICS IOCs, and
JCA is a Java Channel Access protocol which works well with

020103-1

http://dx.doi.org/10.13538/j.1001-8042/nst.25.020103
mailto:lizhong@sinap.ac.cn


HU Zheng et al. Nucl. Sci. Tech. 25, 020103 (2014)

original Epics Channel Access [5]. Although its operation
mechanism (read and store the data via periodic scanning or
monitoring the PV, as shown in Fig. 2) is similar to Channel
Archiver, all access to data in RDB Channel Archiver uses in-
terface layers, and implementations are provided in separate
plug-ins [6] which make it easily compatible with different
databases.

Fig. 2. Operation mechanism of Channel Archiver and RDB Chan-
nel Archiver.

RDB Channel Archiver supports Oracle, PostgreSQL and
MySQL, which are all full-blown database management sys-
tems. We use MySQL as the database for SSRF beamlines,
because Oracle’s license is not free whilst PostgreSQL perfor-
mance is not as high as MySQL. Although MySQL has some
functionality shortages, this does not affect our data archiver.
The E-R diagram of database is shown in Fig. 3 where the
tables ‘smpl eng’, ‘chan grp’, and ‘channel’ represent the in-
formation and configuration of a PV channel, while the table
‘sample’ and ‘array val’ hold the value of archived PVs.

B. Improvement of RDB Channel Archiver

In the original RDB Channel Archiver, a write thread is
used to scan the sample buffers and send the data to the
database. At SSRF, an additional write thread and an upload-
ing controller named uploader are applied. Improvement in
the operation mechanism is that the two write threads oper-
ate alternatively with the buffers, and the database is under
control of the uploader, which controls the upload method
for each write thread by incorporating their upload method in
a java synchronized function. Therefore, no conflict occurs
when two write threads are uploading simultaneously.

Fig. 3. (Color online) Database E-R diagram.

As shown in Fig. 4, the parts drew by solid line are original

RDB Channel Archiver components, and dashed line compo-
nents are added to the RDB Channel Archiver. Symbol ‘SQL’
in Fig. 4 means upload SQL query and send it to the database.
Considering one SQL query usually consumes more time than
preparing process before executing that query, the uploading
is more likely a continuous process and becomes more effec-
tive when two write threads work together.

Fig. 4. Modified RDB Channel Archiver against original RDB
Channel Archiverm.

Nevertheless, nothing is changed to the upper layer, be-
cause launching the two upper layer plug-ins, EngineCon-
figImport and ArchiveEngine, stays the same [7]. The whole
process remains invisible to the final user.

Upload performances of original and improved RDB Chan-
nel Archiver were tested with a set of write period and
batch size, which are major parameters of the RDB Channel
Archiver. The database server was IBM System x3850, with
the Operating System of Red Hat Enterprise Linux Server re-
lease 5.3 (Tikanga). Simulate PVs were used to test the two
RDB Channel Archivers, and the PV scanning rate was 2000
values per second. This rate approximates a high operation
load at SSRF. The write speed of the improved RDB Channel
Archiver was compared with the original one, using various
batch sizes over the write periods of 5 s, 10 s, 15 s and 20 s,
and results are shown in Fig. 5. The uploading performance
is promoted more than 10% in average.

IV. WEB-BASED GUI

A. Frame work of the GUI

A web-based GUI (Graphics User Interface) was devel-
oped for users of the SSRF beanlines (Fig. 6). Users can ac-
cess the database by web browser without installing any other
application from any networked computer. It provides great
convenience for user accessibility. Its server was deployed
under LAMP structure, which works well with the MySQL
database. It is totally driven by PHP, Javascript and HTML,
and the chart elements are based on high charts library, which
has better compatibility and speed than flash.

There are four parts in the web-based GUI. Part I is the
archived PV chart. It has two sub-charts: one master chart of
a large time scope to show whether there are data or not for the

020103-2



EPICS DATA ARCHIVER AT SSRF BEAMLINES Nucl. Sci. Tech. 25, 020103 (2014)

Fig. 5. (Color online) Performance comparison of write speed using
various batch sizes of 500, 1000, 1500 and 2000 samples. The blank
and solid data symbols stand for the original and improved RDB
Channel Archivers.

Fig. 6. (Color online) Data retrieval web page.

Fig. 7. (Color online) PV selected by attributes.

specified PV, and another to show details of the selected time
span from master chart and to provide basic zoom and pan

operations. The exact PV data for corresponding time stamp
can be shown in tooltip when user points at the detailed chart.
The detailed chart could be recorded into a file and saved in
desired disk location.

Part II provides live PV chart. It is redrew each second,
showing the current values of a specified PV. And this chart
contains 20 values which representing values of the last 20
seconds for that PV. Detention measured in millisecond is
also shown as text. If the detention is over 20 minutes, the
text will tell that there is no live PV data.

Part III is a PV selection area. It provides a way to select
PV by attributes, such as name and region of the beamline,
and monitor types. When these attributes are specified, fa-
cilities with corresponding PVs will be displayed under the
options shown in Fig. 7. The users can select a certain PV by
clicking one radio. All the radios are not deployed before they
displayed, they are generated by user input and database. Part
IV is an input box for directly typing PV name, which has the
same purpose as part III.

B. Markov Auto-Complete and its implement

A new kind of Auto-Complete (or suggest) is applied for
the input box in the GUI. It is different from usual Auto-
Complete which does not give a set of suggested words once
the users input a few letters. Instead, it only gives a set of sug-
gested fields of all the possible words each time until all the
fields compose the complete suggestion word. For example,
if the target PV is “X14W:FE:FM1:TC1:AI”, the users need
to type in “X” and select “X14W:”, then select “X14W:FE:”,
“X14W:FE:FM1:”, “X14W:FE:FM1:TC1:AI” to get the tar-
get PV. All the user selections are automatically displayed in
the input box, and the users need only key ‘up’ or ‘down’
and ‘enter’ to complete the selection. This process is shown
in Fig. 8. This can hardly be done by usual Auto-Complete
if there are too many suggestion words start with “X”, indi-
cating advantage of this method. In fact, the whole word is
divided into several parts, and is treated as a markov chain.

Fig. 8. (Color online) Process of selecting PV by ‘Markov Auto-
Complete’.

020103-3



HU Zheng et al. Nucl. Sci. Tech. 25, 020103 (2014)

V. CONCLUSION

RDB Channel Archiver is a promising upgrade for Chan-
nel Archiver. It offers a mature solution for long term opera-
tion data storage, being easier to access. Upload mechanism

of RDB Channel Archiver is improved remarkably on SSRF
beamlines. A web-based GUI with a new user input method
(‘Markov Auto-Complete’) was developed to provide better
reliability and usability. Users can access the operation data
easily and fast by web browser from any networked computer.

[1] SSRF Home Page. http://ssrf.sinap.ac.cn/,
September 10, 2013.

[2] EPICS Home Page. http://www.aps.anl.gov/
epics/, September 10, 2013.

[3] Dalesio L R, Kraimer M R, Kozubal A J. EPICS architecture,
ICALEPCS. 1991, 91: 92–15.

[4] Kasemir K, Gabriele Carcassi. Control System Studio Guide.
http://cs-studio.sourceforge.net/docbook/,
September 10, 2013.

[5] JCA Home Page. http://jca.cosylab.com/, September
10, 2013.

[6] Kasemir K. Control System Studio (CSS) Data Browser, in Proc
PCaPAC08, Ljubljana, Slovenia, 2008, pp. 99–101.

[7] del Campo M, Giacchini M, Giovannini L, et al. EPICS Hy-
perArchiver: initial tests at ESSBilbao, in Proc. IPAC2011, San
Sebastián, Spain, 2011, pp. 2343–2345.

020103-4

http://ssrf.sinap.ac.cn/
http://www.aps.anl.gov/epics/
http://www.aps.anl.gov/epics/
http://cs-studio.sourceforge.net/docbook/
http://jca.cosylab.com/

	EPICS data archiver at SSRF beamlines
	Abstract
	Introduction
	EPICS structure
	RDB Channel Archiver and its improvement
	Structure of RDB Channel Archiver
	Improvement of RDB Channel Archiver

	Web-based GUI
	Frame work of the GUI
	Markov Auto-Complete and its implement

	Conclusion
	References


