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Pulsed intense electron beam emittance measurement
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Recently we measured with the Modified Three Gradient Method (MTGM) the beam emittance of an injec-
tor constructed in 2012, which was designed to provide a 2.4 kA, 2.6MeV electron beam. The MTGM is a
non-intercept indirect method, which is based on the three gradient type measurements of beam profiles and
subsequent data processing which helps to get the least square solution to the beam emittance. Beam profiles
under different currents of guiding coil are measured using Cerenkov radiation given off by a piece of quartz
glass in the beam tube, which is recorded with a CCD camera. MTGM Code is developed to realize the data
fitting as well as beam transport simulation, in which both the σ matrix method and the numerical solution of
root-mean-square beam envelope equation are used. The error is also analyzed.
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I. INTRODUCTION

In most applications, emittance and brightness are the main
figures of merit of particle beams. The horizontal emittance
and vertical emittance are related to the beam brightness,
which is defined as B = I/π2εxεy . Here, the horizontal
(vertical) emittance is usually defined by considering the x
and x′ phase space, as the area (optionally divided by π) of
the ellipse containing 95% (or an arbitrary number) of all par-
ticles in its interior. Low beam emittance is key to achieving
the required spot size at the output focus of the beam line.

The Liouville theorem [1] states that volumes in phase
space are invariant for a Hamiltonian system. In linear ac-
celerators, where the particle energy is varied, the emittance
is not invariant. Instead, one defines the so-called normalized
emittance, εn = βγε. The normalized emittance is conserved
during acceleration.

Conventional measurements of emittance include the pep-
per pot method [2], the three gradient method [3], the
MTGM [4, 5], etc. Here we use the MTGM for its advan-
tages, such as the online feasibility for non-destructive proce-
dure.

The main concept of MTGM is shown in Fig. 1. It is based
on the three gradient type measurements of the beam radius
and a data fitting to the measured cross-over curve.

Under a certain current of guiding coil, supposing that ε
and initial conditions (R0, R′0) are known, the root-mean-
square beam envelope of an axially symmetric beam is de-
scribed by the following equation [6]

R′′rms + k2Rrms −
K

2Rrms
− ε2rms

R3
rms

= 0, (1)

k =
ecBz

2βγm0c2
, K =

2Ib
17045β3γ3

, (2)
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Fig. 1. (Color online) Diagram of MTGM. The beam profile sizes at
analysis plane change corresponding to focusing current in guiding
coil. Multi measurements provide a set of scattered data (red dots).
Fit to this data set with a cross-over curve (blue line) solved from
beam envelope equation, we can get a least square solution of beam
emmitance.

where Rrms is the beam radius and εrms is the beam emittance
normalized to the beam energy. It is found that εrms remains
a constant during non-accelerating transport procession. The
foot rms denotes root-mean-square, which will be dropped
for the remainder of this paper for the sake of concession.
Note that all ε in the following is edge emittance normalized
to energy. k is one half the cyclotron wave numbers with Bz ,
the axial magnetic field determined by focusing the current of
the guiding coil. K is the general diversion coefficient with
Ib, the beam current, measured by the CVRs. β and γ are
relativistic factors and can be calculated from beam energy,
which is measured with a capacitive probe mounted in the
gap between the accelerator cells.

Equation 1 can be solved with the numerical method by
converting the problem to a 1-order differential equation
group, which can be solved with the Runge-Kutta method [7].
Solving the equation under a different magnetic field will
generate a set of beam radii data, from which a cross-over
curve revealing the relation between beam radius at the anal-
ysis plane with magnetic field can be constructed. Reversely,
if we can get the cross-over curve through experiments, (ε,
R0, R′0) can be deduced by the data fitting method. In our
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Fig. 2. (Color online) Sketch of experimental setup. Beam from emission plane transports through a set of coils and interacts with a quartz
glass at the back of the analysis plane which visible light is given out and accepted by a CCD camera. The information of beam profile size
is later detached by a computer software.

work, the σ matrix method is used as an aid to find the least
square fitting to the cross-over curve.

II. MEASUREMENTS

Beam profiles are measured by making use of Cerenkov
Radiation (CR) [8], which is given off by charged particles
traversing a transparent dielectric medium in which its ve-
locity exceeds that of light. It is preferred in experiments
profiting from its definite direction, rapid response time, and
the proportional property of the yield of photons to the num-
ber of electrons. Given off at the analysis plane, which is
located at a distance of 574.5 mm downstream from the cen-
ter of the guiding coil, the CR light is reflected by a reflector
and accepted by a CCD camera. Through a fiber, it is trans-
mitted on to an online computer. The experimental sketch is
shown in Fig. 2.

The parameters of the solenoid coils on the experimental
beam line are listed in Table 1.

TABLE 1. Solenoid Coils Parameter
Solenoid Length RO RI Excitation Position

No. (m) (m) (m) (A×n) (m)
LC1 0.172 0.186 0.164 31476 0.356
LC2 0.217 0.186 0.164 0 0.774
IC01 0.373 0.248 0.230 10560 1.386
IC02 0.373 0.248 0.230 13200 1.859
IC03 0.373 0.248 0.230 17160 2.332
IC04 0.373 0.248 0.230 15840 2.805
IC05 0.373 0.248 0.230 17160 3.278
VC 0.373 0.248 0.230 31680 3.740

MC01 0.338 0.121 0.093 0-61440 4.253

The images of beam profiles under different focusing cur-
rents are shown in Fig. 3.

Scan the images in the radial direction and draw its gray
scale curve, from which the beam radii are read out (see Ta-
ble 3 in Section III).

Fig. 3. Measurements of beam profiles. Beam profiles change while
adjusting focusing current of MC01. At 11Ampere, beam profile
reaches its minimum.

III. SIMULATION RESULTS AND DISCUSSION

MTGM was applied to measure the emittance of a space
charge dominated electron beam and has been tested to be
effective.

The magnetic field under different current supply is calcu-
lated. Fig. 4 plots the magnetic field curve from z0 = 3 m to
z0 = 4.642 m. The plot reveals the proportional property of
the magnetic field to the current supply.

The start point of calculation is selected to be z = 3 m,
a position where the magnetic field of MC01 is trivial and
the initial conditions are relatively constant during different
measurements times.

MTGM CODE is designed to aid in searching for (ε, R0,
R′0) by fitting the least square to the measured (Ri, Ii).

The Beam envelope equation is a second order derivative
function with a varying coefficient, whose explicit solution
is difficult to get by integration directly [9]. However, the
σ matrix method provides a concise way to find the direct
relation betweenR and initial conditions. It makes it possible
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Fig. 4. (Color online) Transport magnetic field. The magnetic field
is constant at z = 3m while changing focusing current of MC01 at
z = 4.253m.

to use the data fitting least square method [10]. As a matter of
fact, the σ matrix method is a beam transport solving method
which can have an independent effect even though it plays
the role of a complement to the beam envelope method in this
way. After a great deal of manipulation, we obtained

R =

√
M2

11R
2
0 + 2M11M12

(
±
√
R2

0R̃
′
0

2
− ε2

)
+M2

12R̃
′
0

2
,

(3)
here, M is the transport matrix of the beam line as a
whole [11]. Special attention should be paid to the R̃′0 as-
sociated with the σ matrix in this function, since it is not the
derivative of R over z, but the beam angular envelope, which
is the maximum of r′0 in the phase space [12] and can be cal-
culated by solving the ellipse function in phase space. As a
matter of fact, the (ε,R0, R̃′0) here is a set of initial conditions
of the σ matrix method, which is equivalent to the (ε, R0,
R′0) of the beam envelope equation. Both sets can be derived
from one another by taking the derivative over z of Eq. (3) at
z = z0. The sign of the second term is determined by the di-
rection of the ellipse in phase space, negative for converging
procession, while positive for diverging procession.

The least square method demands the minimum of

‖δ‖22 =

m∑
i=1

[R (ii)−Ri]
2

= min
R0,R′0,ε

m∑
i=1

[R (ii)−Ri]
2
.

(4)
This requires the zero derivatives of ‖δ‖22 to ε, R0, R′0:

∂‖δ‖22
∂ε

= 0,
∂‖δ‖22
∂R0

= 0,
∂‖δ‖22
∂R′0

= 0. (5)

A three dimension equations set on R0, R′0, ε can be ob-
tained by substituting the expression of R and ‖δ‖22 into the

Fig. 5. (Color online) R–I data and fitting cross-over curve. Mea-
surements (blue diamonds) are the rms radius of beam at different
focusing currents. Calculation (red curve) is the best fit calculated
from the beam envelope equation.

functions above. By solving the equation set, we can get the
solution of R∗0, R

′∗
0 , ε∗ proscribing by the least square ap-

proximation to the measured data.

TABLE 2. The least square solution of (ε, R0, R′0)

Parameters ε∗ (π · mm · mrad) R∗0 (mm) R′∗0 (mrad)
Values 1120 9 18

The emittance and the corresponding initial conditions (ε∗,
R∗0, R

′∗
0 ) are listed in Table 2.

Using the (ε∗, R∗0, R′∗0 ) above, the numerical solution of
the beam envelope equation is obtained with the forth order
Runge-Kutta method.

The measured R–I data and calculated data is listed in
Table 3.

TABLE 3. Radii versus focusing current

NO. I (A) Ri (mm) R(Ii) (mm) δi (mm)
1 0 24.9 25.73 0.83
2 2 24.0 25.49 1.49
3 4 22.0 24.79 2.79
4 6 21.0 23.65 2.65
5 8 19.9 22.08 2.18
6 10 18.4 20.14 1.74
7 12 16.5 17.86 1.36
8 15 13.4 14.08 0.68
9 17 10.9 11.41 0.51

10 20 7.2 7.56 0.36
11 24 3.7 4.13 0.43
12 28 5.9 5.75 −0.15
13 32 7.8 9.39 1.59
14 35 12.0 11.32 −0.68
15 38 15.5 12.09 −3.41
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Fig. 6. (Color online) Beam Envelopes(Lines are the same as
Fig. 4). Beam envelopes are sharply modulated by focusing cur-
rent of MC01. The minimum should be near the blue one, within the
range between the blue one and the red one.

The cross-over curve corresponding to (ε∗, R∗0, R′∗0 ) is
plotted in Fig. 5.

The beam envelopes are shown in Fig. 6.
Precision of the method requires sufficient data acquisition

within a wide range. This can be realized by carefully choos-
ing of the distance between the center of guiding coil and the
analysis plane, as well as their position within the beam en-
velope evolution.

Now let’s write equation (1) in the following form

R′′rms = −k2Rrms +
K

2Rrms
+
ε2rms

R3
rms
, (6)

here, the term on the left is a kind of force on the beam enve-
lope, while the terms on the right side of the equation repre-
sent contributions of different forces, including the focusing
force of the axial magnetic field Bz and defocusing forces
from the space charge effect and beam emittance.

This will be clearer if we deal with the three functions indi-
vidually. The focusing effect of the axial magnetic field over
a small step can be described by

R =

√
(kR0)2 +R

′2
0

kR0
sin

[
k(z − z0) + arctan

(
−kR0

R′0

)]
.

(7)
The effective emittance force describes the beam transport

in drift space.

R =

√[
(R0R′0)2 + ε2

R2
0

] [
z − z0 +

R3
0R
′
0

(R0R′0)2 + ε2

]2
+

ε2R2
0

(R0R′0)2 + ε2
. (8)

This equation defines a hyperbolic evolution of the beam
envelope under the effect of emittance, restricted by which
the minimum of beam radius is

Re,min =
εR0√

(R0R′0)2 + ε2
. (9)

The effect of space charge can not be expressed explicitly.
However, through integrating the equation over a small step,
we can get

R′ = ±
√
R′0 +K ln

R

R0
. (10)

or written in the form

R = R0e
−R′2−R′20

K . (11)

This equation representing the expanding effect of space
charge force restricted by the minimum of beam radius is

Rsc,min = R0e
−R
′2
0
K . (12)

When R is a big number, or at positions far away from
the bottom of the cross over curve, where the magnetic field

focusing force dominates, R is sensitive to variation in mag-
netic field. However, the situation changed at the bottom of
the cross over curve, whereR is a small number and is mainly
determined by emittance and space charge force.

Therefore, finding the exact minimum spot of the crossover
curve is crucial to determining the beam emittance. A feasible
measure is to get as much data as possible in the vicinity of
the bottom of the cross-over curve by shortening the steps
of the guiding current. Repeated measurements at the same
guiding current also help to eliminate the intrinsic uncertainty
of beam size.

The error is mainly introduced by: (1) error of beam radius
measurements; (2) error of beam energy and beam current;
(3) error of the MTGMCODE. Elaborate error analysis has
been done elsewhere [13]. It is found that the influence of (1)
affects the precision while (2) and (3) are relatively trivial.

We simulated the transport of beams with different emit-
tances, increasing from 120 to 1720 in an arithmetical pro-
gression, as shown in Fig. 7. Each step between two adjacent
curves is 20 0πmm mrad.

By taking partial derivatives of Eq. (3) over ε, R0, R̃′0, we
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Fig. 7. (Color online) A set of cross-over curves and corresponding
emittance. Different radius levels give different emittances.

TABLE 4. Corresponding Parameters

NO. ε (π mm mrad) R0 (mm) R′0 (mm)
1 120 13.9 2.2
2 320 13.8 4.5
3 520 13.2 8.2
4 720 11.9 12.3
5 920 10.5 15.5
6 1120 9 18
7 1320 7.8 19.6
8 1520 6.6 20.2
9 1720 5.8 18.5

can get the error formula

∆R =
∂R

∂ε
∆ε+

∂R

∂R0
∆R0 +

∂R

∂R′0
∆R̃′0

=∓ ε∆ε

R
· M11M12√

R2
0R
′2
0 − ε2

+
R0∆R0

R

(
M2

11 ±
M11M12√
R2

0R
′2
0 − ε2

· R̃
′2
0

)

+
R̃′∆R̃′0
R

(
M2

12 ±
M11M12√
R2

0R
′2
0 − ε2

·R2
0

)
.

(13)

Beam radius measurement uncertainty will result in errors
in the discrimination of R0, R′0, and ε. Substituting R0, ε in
the formula above withR∗0, ε∗, and R̃′0 calculated fromR′0 by
taking the derivative over z of Eq. (3) at z = z0. For a given
transport system,M11 andM12 are functions of z determined
by its structure and parameters. The error formula can be

written in the form

∆R = α
ε∆ε

R
+ β

R0∆R0

R
+ γ

R̃′0∆R̃′0
R

, (14)
here, R is the result of the least square fitting to the mea-
sured data. For each point on the plot in Fig. 7, the error of
ε is roughly in positive proportion to that of R. The relation
between emittance and radii can be roughly formulated as

∆ε(πmm mrad) = (200 ∼ 1600)∆R(mm). (15)

This means that around the minimum of the cross-over
curve, small radius measurement uncertainty may result in
large emittance calculation errors, about 8 times that of the
measurements far away from it. For example, at the bottom of
the cross over curve, a 1 mm radius measurement uncertainty
will cause about a 160 0πmm mrad emittance calculation er-
ror, while at the upper side of the curve, the same radius mea-
surement uncertainty will cause only about a 20 0πmm mrad
emittance calculation error, only one eighth of the former.

The relative error is

∆ε

ε
= η

∆R

R
. (16)

Under measuring conditions, η is within the region of 6 and
10, with 10 at the lower part of the plot and 6 at the upper part.

The parameters corresponding to each plot are listed in Ta-
ble 4, including the emittance, and the initial values of the
radius and the spreading angle.

IV. CONCLUSION

Results from the Modified Three Gradient Method
(MTGM), applied to a pulsed high intensity electron source,
are presented. The method, experimental set-up, and ex-
perimental results referring to the non-destructive beam emit-
tance measurements are presented. The MTGM makes pos-
sible the non-destructive determination of beam emittance in
a space charge presence. The method is based on an inte-
gration of both beam cross-section measurements, realized
in the three-gradient arrangement, and the beam envelope
equation for an axially symmetric configuration. The ex-
perimental data is processed with a numerical matching pro-
gram to determine the emittance and diameter. In the pro-
gram, the σ matrix method was used to find the least square
fitting to the measured cross-over curve to find the emittance;
the envelope equation was solved with the numerical method
of the 4th order of the Runge-Kutta method to obtain beam
radius. The measurement error is also analyzed. For the
experimental beam, the normalized edge emittance is about
112 0πmm mrad.
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