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Abstract  A fast orbit feedback system is designed at SSRF to suppress beam orbit disturbance within sub-micron in 

the bandwidth up to 100 Hz. The SVD (Singular value decomposition) algorithm is applied to calculate the inverse 

response matrix in global orbit correction. The number of singular eigenvalues will influence orbit noise suppression 

and corrector strengths. The method to choose singular eigenvalue rejection threshold is studied in this paper, and the 

simulation and experiment results are also presented. 
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1 Introduction 

According to the design specifications, beam stability 

of Shanghai Synchrotron Radiation Facility (SSRF) is 

523 μm in horizontal plane and 12 μm in vertical 

plane[1]. The fast orbit feedback (FOFB) system of 

SSRF is implemented to suppress orbit noise within 

sub-micron in the range of DC to 100 Hz[2].  

The FOFB system consists of 40 BPMs and 60 

pairs of correctors. A star topology is used to build an 

effective transfer system for synchronous data from 

different VME crates. The SVD algorithm is applied to 

calculate the inverse response matrix in the fast orbit 

feedback system. 

 

 

 

 

 

 

 

 

 

 
Fig.1  Layout of the FOFB system. S1S10, VME SBCs; A, reflective memory; B, interface to BPM electronics; C, interface to 
power supply controller; D, timing module. 
 

2 Analysis of response matrix 

In testing and commissioning of the fast orbit feedback 

system, 12 eBPMs out of 40, and 20 pairs of correctors 

out of 60, are chosen. The normal method to measure 

the response matrix is the least square algorithm, 

which is accomplished by setting correctors and 

measuring the beam orbit step by step. Since an orbit 

drift of several microns was observed in about 1 min 

in the storage ring of SSRF, the least square algorithm 

would bring system errors during the calculation of the 

response matrix. So the direct method to get the orbit 

difference between two steps of correctors setting was 

applied to calculate the response matrix. The measured 
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response matrix is shown in Fig.2. The BPM index 

112 is in the horizontal plane, and the BPM index 

1324 is in the vertical plane. 

Coupling between horizontal and vertical planes 

affects the orbit correction, and applying correction in 

one plane can introduce distortion on the corrected 

orbit in the other plane[3]. The measured response 

matrix indicates that the crosstalk between horizontal 

and vertical planes is weak, and the average level is 

below 0.5%. Therefore, in the calculation of the 

inverse response matrix, the inverse sub-matrices in 

horizontal and vertical plane were generated 

respectively, and then the inverse response matrix was 

formed.  

Because of the storage ring lattice and the noise of 

the BPM system, the nearly singular values were 

normally generated when implementing SVD 

algorithm to calculate the inverse response matrix. 

Consequently, a choice of singular eigenvalue 

rejection threshold was needed, so that the require- 

ments of correction precision and corrector strengths 

 

 

 

 

 

 

 

 

 

 

 

Fig.2  The response matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  The inverse response matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Eigenvalues of the response sub-matrix in each plane. 

 

could be satisfied. The inverse response matrix is 

shown in Fig.3. The eigenvalues of the response 

sub-matrix in each plane are shown in Fig.4. If there 

are some nearly singular eigenvalues, the power 

supplies of correctors are easily overloaded when the 

fast orbit feedback system is in operation. 

3 Analysis of correction errors 

LetΔx be the difference between reference orbit and 

current orbit. In terms of the definition of response 

matrix, the corrector strength Δ can be calculated as 

xRinv  .                      (1) 

So the residual orbit error after applying the correction 

Δ is[4] 

  ,inv

x x R

I R R x A x

     

     
           (2) 

where 

invRRIA  .                      (3) 

The measured orbit noise is fitted with Gaussian 

distribution. Fig.5 shows that the close orbit distortion 

of all BPMs is less than 4.5 μm. The R-square 
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parameter of orbit noise is shown in Fig.6, which 

describes the fitness of random data to Gaussian 

distribution[5]. The R-square values in No.10 and 

No.21 BPM are small, and we believe that both of 

them are affected by slow drift of the beam orbit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5  The RMS of orbit noise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6  The fitness to Gaussian distribution. 
 

Therefore, it is reasonable to assume that the orbit 

noise has a Gaussian distribution with zero mean and 

the same standard deviation . Then based on the 

linear relationship in Eqs.(1) and (2), the corrector 

strengths and the correction errors also have a 

zero-mean Gaussian distribution. The standard 

deviations of the corrector strengths are given by 





n

j
iji r

1

2 ,                      (4) 

where n is the number of BPMs and rij is the element 

of matrix Rinv. The standard deviations of the 

correction errors are given by 
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where aij is the element of matrix A.  

Let= 6 μm, the average of the calculated i
' and i

" 

are shown in Fig.7. It shows that the correction errors 

decrease with the increasing number of the retained 

eigenvalues, and the corrector strengths increase with 

the increasing number of the retained eigenvalues. 

. 

 

 

 

 

 

 

 

 

 

 

 

Fig.7  The calculated correction errors and corrector strengths. 

4 The measured correction errors 

In the measurement, orbit distortion was randomly 

generated with a Gaussian distribution with zero mean 

and the same standard deviation 6 μm. The corrector 

strengths were calculated to correct the beam orbit by 

the inverse response matrix. The correction errors 

measured are the difference between appointed orbit 

distortion and the measured orbit changes. 

The measured correction errors and corrector 

strengths are shown in Fig.8. The experiment results 

agree well with the calculation results. Corrector 

strength errors, which are not considered in Section 3, 

might result in the difference between the calculated 

correction errors and measured correction errors. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8  The measured correction errors and corrector strengths. 
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In Eqs.(4) and (5), the RMS value  of the 

appointed orbit distortion was = 6 μm. But the 

measured RMS orbit distortion is less than 4.5 μm 

from the measured result of Fig.5, the correction errors 

in Fig.8 can be calculated at around 1μm when the 

retained eigenvalue number is 11 or 12. In Fig.4, the 

smallest eigenvalue of each submatrix is less than 1% 

of the largest one, and the difference in the order of 

magnitudes may lead to overload of power supplies of 

correctors. Therefore, in order to suppress the orbit 

noise to around 1μm and to avoid the overload of the 

corrector strengths, it is suitable to choose 1% of 

maximum eigenvalue as the singular eigenvalue 

rejection threshold and retain 11 eigenvalues for each 

submatrix[4]. 

5 Conclusion 

SVD algorithm was applied to calculate the inverse 

response matrix in SSRF FOFB system. The method to 

generate inverse response matrix proved successful  

 

and practical by the testing results. And there was a 

good match of calculated and measured correction 

errors. The optimal singular eigenvalue rejection 

threshold was found.  
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