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The key to large-scale parallel solutions of deterministic particle transport problem is single-node computa-
tion performance. Hence, single-node computation is often parallelized on multi-core or many-core computer
architectures. However, the number of on-chip cores grows quickly with the scale-down of feature size in semi-
conductor technology. In this paper, we present a scalability investigation of one energy group time-independent
deterministic discrete ordinates neutron transport in 3D Cartesian geometry (Sweep3D) on Intel’s Many Inte-
grated Core (MIC) architecture, which can provide up to 62 cores with four hardware threads per core now and
will own up to 72 in the future. The parallel programming model, OpenMP, and vector intrinsic functions are
used to exploit thread parallelism and vector parallelism for the discrete ordinates method, respectively. The
results on a 57-core MIC coprocessor show that the implementation of Sweep3D on MIC has good scalability in
performance. In addition, the application of the Roofline model to assess the implementation and performance
comparison between MIC and Tesla K20C Graphics Processing Unit (GPU) are also reported.
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I. INTRODUCTION

The discrete ordinates (Sn) method is one of the most
popular deterministic numerical methods for solving parti-
cle transport equations [1]. The particle transport equation
depends on the energy, angular directions and spatial coordi-
nates of the particles with an underlying medium so that the
solution is highly computation-intensive [2]. Some works [3–
5] reveal that single-node computation speed is the key per-
formance factor, rather than inter-processor communication
performance, in the discrete ordinates method for large-scale
problems. The advent of on-chip multi-core or many-core
computer architectures makes it possible to overcome the
challenges above.

The Sweep3D benchmark [6] is a time-independent,
single-group, discrete ordinates 3D Cartesian geometry deter-
ministic neutron transport code, which is extracted from real
Department of Energy (DOE) Accelerated Strategic Comput-
ing Initiative (ASCI) applications. It represents the heart of
the discrete ordinates method for solving particle transport
equations. Recently, Sweep3D has been accelerated on differ-
ent multi-core or many-core computer architectures [7–13].
Petrini et al. [7] ported Sweep3D to the Cell Broadband En-
gine (B.E) processor with an on-chip single-MPI routine and
the implementation acquired good performance by means of
exploiting different levels of parallelism and data streaming
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in Sweep3D. In contrast with Petrini et al., Lubeck et al. [8]
developed a library of on-chip SPU-to-SPU communication
routines and utilized on-chip multi-MPI routines to accom-
plish an SPU-centric implementation of Sweep3D on Cell
B.E.. The latter got better performance owing to the decrease
of data movement. With the application of many-core archi-
tectures in high performance computing, Sweep3D has been
implemented on Graphics Processing Unit (GPU) [9, 10] and
Intel Many Integrated Core (MIC) [13]. Gong et al. [9] used
multi-dimensional optimizations to parallelize Sweep3D on
GPU and a speedup of 2.25 times was reached in compari-
son to the CPU-based version when flux fixup was disabled.
Moreover, more concurrent threads were obtained by exact-
ing parallelism in the data-dependent loop of solving recur-
sive Sn equations in Sweep3D and then further performance
improvement on GPU was achieved [10]. Wang et al. [13]
applied both hardware threads and vector units in MIC to ef-
ficiently exploit multi-level parallelism in Sweep3D and got
a 1.99 times speedup based on an eight-core Intel Xeon E5-
2660 CPU.

The number of transistors integrated on a single chip in-
creases exponentially as the semiconductor industry contin-
ues to scale down feature size. The growth in the number
of transistors permits the rapid development of Chip Multi-
processor (CMP) architectures. One evolving trend of CMP
architectures is integrating more and more general-purpose
cores on each chip, such as the Intel MIC architecture [14]
which is built on light-weight x86 cores. MIC was introduced
as a highly parallel coprocessor by Intel Corporation in 2010.
The earlier prototype card of the Intel MIC architecture, co-
denamed Knights Ferry (KNF), provides up to 32 cores with
four threads per core in a single chip. The first generation
product, codenamed Knights Corner (KNC), consists of up to
62 cores per chip. The second generation product, codenamed
Knights Landing (KNL), will feature up to 72 cores with four
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threads per core in future [15]. Therefore, it’s important to
study how parallel algorithms scale with the number of cores
on CMP architectures. Wang et al. [16] studied the scalabil-
ity of the embarrassingly parallel algorithm on MIC. Saule et
al. [17] evaluated the scalability of three graph algorithms on
MIC. However, there is little work about the scalability eval-
uation of 3D deterministic particle transport on the Intel MIC
architecture.

The work in this paper is based on our previous work about
the parallelization of 3D deterministic particle transport on
MIC [13]. We present the investigation of the scalability of
3D deterministic particle transport algorithms on MIC. Our
results on an MIC chip, including 57 cores, show that the
algorithm can scale well with the rapidly increasing number
of cores in MIC. Without flux fixup, the performance of the
algorithm is determined by the number of cores and the off-
chip memory bandwidth in the MIC. With flux fixup, most of
the algorithm cannot be vectorized, then the performance of
the algorithm is mainly dependent on the number of cores in
the MIC. Additionally, we apply the Roofline model to assess
the implementation of Sweep3D on MIC, and also compare it

with the GPU implementation running on Tesla K20C GPU.
The structure of this paper is as follows. Section II presents

the relative background. Section III describes MIC-based
Sweep3D implementation in detail. The results of perfor-
mance and scalability are collected in Sec. IV. In Sec. V, we
conclude and describe future work.

II. BACKGROUND

A. Sweep3D

The time-independent single-group particle transport equa-
tion is shown in Eq. (1). The unknown field is Ψ(~r, ~Ω), which
represents the flux of particles traveling in direction ~Ω at spa-
tial point ~r. σt is the total cross section and σs is the scattering
cross section from ~Ω′ into ~Ω at ~r. The right-hand side of the
equation is the source item, including the scattering source
and external source. Qext(~r, ~Ω) expresses the external source.

~Ω · ∇Ψ(~r, ~Ω) + σt(~r)Ψ(~r, ~Ω) =

∫
4π

σs(~r, ~Ω
′ → ~Ω)Ψ(~r, ~Ω′)d ~Ω′ +Qext(~r, ~Ω). (1)

In Sweep3D, the angular-direction, Ψ, is discretized into a set
of quadrature points and the space is divided into a finite mesh
of cells. The XYZ geometry is represented by an IJK logi-
cally rectangular grid of cells. Source Iteration (SI) scheme is
used to deal with the angular couplings by scattering media.
Each iteration includes computing the iterative source, wave-
front sweeping, computing flux error, and judging whether
the convergence condition is met or not. Wavefront sweep-
ing is the most time-consuming part. In Cartesian geometry,
each octant of angle sweeps has a different sweep direction
through the physical space, and all angles in a given octant
sweep the same way. Integrating the left-hand and right-hand
sides of Eq. (1) over the neighboring angular-directions re-
gion, ∆~Ωm, of a given discrete angle, ~Ωm(µm, ηm, ξm), we
get the balanced equation as follows:

µm
∂Ψm

∂x
+ηm

∂Ψm

∂y
+ ξm

∂Ψm

∂z
+σt(~r)Ψm = Qm(~r). (2)

In SI scheme, Qm(~r) is known. The diamond space dif-
ference scheme is applied to get three auxiliary equations so
that each grid cell has 4 equations (3 auxiliary plus 1 balance)
with 7 unknowns (6 faces plus 1 central). Boundary condi-
tions initialize the sweep and allow the system of equations to
be completed. For any given cell, three known inflows make
the cell center and three outflows can be obtained, and then
the three outflows provide inflows to three adjoining cells in
particle traveling directions. Therefore, there is a recursion
dependence in all three grid directions. The recursion depen-
dence causes the sweep to proceed in a diagonal wave across

the physical space, shown in Fig. 1. Therefore, the parallelism
is limited by the length of the JK-diagonal line. To alleviate
this problem, MMI angles for each octant are pipelined on
JK-diagonal lines to increase the number of parallel I-lines.

Angle MMI

Angle ...

Angle 1

J

K
Fig. 1. Wavefront sweeping and angle pipelining in Sweep3D.

Moreover, Sweep3D utilizes Diffusion Synthetic Accelera-
tion (DSA) [18] to improve its convergence of source iteration
scheme. So wavefront sweeping subroutine mainly involves
computing sources from spherical harmonic (Pn) moments,
solving Sn equation recursively with or without flux fixup,
updating flux from Pn moments, and updating DSA face cur-
rents, as shown in Fig. 2.
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ste
1 for iq = 1 to 8 do // octants

2 for mo = 1 to mmo do // angle pipelining loop

3 for kk = 1 to kb do // k-plane pipeling loop

4 RECV East/West // recv block I-inflows

5 RECV North/South // recv block J-inflows

6 for idiag = 1 to jt+ nk − 1 +mmi− 1 do
// JK-diagonals with MMI pipelining

7 for jkm = 1 to ndiag do // I-line grid columns

8 for i = 1 to it do
9 Compute source from Pn moments

10 if not do fixup then
11 for i = 1 to it do
12 Solve Sn equation

13 else
14 for i = 1 to it do
15 Solve Sn equation with fixup

16 for i = 1 to it do
17 Update flux from Pn moments

18 for i = 1 to it do
19 Update DSA face currents

20 SEND East/West // send block I-inflows

21 SEND North/South // send block J-inflows

Fig. 2. Wavefront sweeping subroutine in Sweep3D.

B. MIC Architecture

The MIC architecture is shown in Fig. 3. Each MIC chip
consists of many general-purpose cores. These cores are in-
order and issue two instructions per cycle to two asymmet-
rical pipelines (u and v-pipes). The two pipelines can both
deal with scalar operations, whereas only the u-pipe can exe-
cute vector operations. One vector unit in MIC can perform
16 single precision or 8 double precision floating point oper-
ations simultaneously. The vector units also support the float-
ing point fused multiply-add operations. Each core maintains
four hardware threads and schedules these threads by round
robin. Each core also owns a 32-KB private L1 instruction
cache, 32-KB private L1 data cache, and 512-KB unified L2
cache. The two-level caches of all cores are kept coherent
by a distributed tag directory. There are multi on-die Mem-
ory Controllers (MCs), which are used to connect off-chip
high-bandwidth Graphics Double-Data Rate, version 5 mem-
ory (GDDR5) to on-chip cores and L2 caches in the MIC. All
cores, MCs, and caches on the chip communicate with each
other by a high-bandwidth bidirectional ring bus.

MIC architecture supports many parallel programming
models, such as Open Multi-Processing (OpenMP), Intel Cilk
Plus, and Intel Threading Building Blocks (TBB). In the fol-
lowing implementation, we use OpenMP to exploit the com-
puting capability of parallel hardware threads in MIC. The
ways to make use of the vector units in MIC include com-
piler automatic vectorization and vector intrinsics functions.
As compiler automatic vectorization is only possible for sim-
ple loops, we apply intrinsics functions to exploit the vector
parallelism in the discrete ordinates method. Additionally,
two kinds of usage models are available in MIC, offload and
native. In the offload model, MIC runs as a coprocessor like
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Fig. 3. MIC architecture.

GPU. In the native model, MIC acts as a many-core processor.
In contrast with the usage model of GPU, the native model is
unique to MIC. In order to eliminate the influence of com-
munication between the CPU host and MIC coprocessor, we
use the native model of MIC to evaluate the scalability of 3D
deterministic particle transport on MIC.

III. DETAILS OF MIC-BASED IMPLEMENTATION

To achieve full utilization of parallel computing resources
in MIC, one MIC-based particle transport solver is proposed
in Fig. 4. In the solver, we use the mechanism of thread par-
allelism and vector parallelism to exploit the parallelism in
each procedure of the discrete ordinate method.

A. Thread Parallelism

As shown in Fig. 4, all three procedures of Sweep3D are
processed with many parallel threads, while thread paral-
lelism in these procedures is different.

The iterative source is equal to iterative scattering moments
plus the external source, shown in Eq. (3):

Sl(~r)i = σs(~r)Φl(~r)i−1 + [Qext(~r)]l==0, (3)

where i presents the ith iteration loop. There is no dependence
among the calculations of iterative source of all cells so that
the iterative source of all cells in each iteration can be com-
puted in parallel. The OpenMP primitive parallel_for can be
utilized to schedule the parallel tasks to all parallel hardware
threads. The granularity of scheduling the tasks can be one
I-line grid column and one k-plane grid block. In Sweep3D,
the number of k-plane grid blocks may be too small to make
the tasks occupy all the hardware threads. Hence, one I-line
grid column is set to the minimum granularity of partitioning
the tasks in the thread-level parallelization of the computing
iterative source.

As one JK-diagonal line provides the input to the adjoin-
ing JK-diagonal line in the particle traveling direction, it’s
very difficult to extract thread-level parallelism in wavefront-
sweeping. Fortunately, all I-lines in each JK-diagonal line are
independent of each other. The parallelism is the number of
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Fig. 4. Work flow of the MIC-based particle transport solver. Cal-
Iterative-Src: compute source from external source plus scattering
moments. Cal-Src-Fm-Pn: computing source from Pn Moments.
Slv-Rec-Sn: solving recursive Sn equations. Update-Flux: updating
flux from Pn moments. Update-Face-Cur: updating DSA face cur-
rents. Cal-Max-Err-I-line: computing max relative flux error among
cells in I-line grid columns.

I-lines in JK-diagonal lines and varies with particle transport-
ing. The minimum number of I-lines in all JK-diagonal lines
is one and the maximum is the problem size of the J or K
dimensions in Fig. 1. There are a large number of parallel
hardware threads in MIC, and it’s important to increase the
amount of parallelism. Therefore, the MMI angles for each
octant are pipelined. As shown in Fig. 1, the problem sizes of
the I and K dimension are both six, and three different angles
are processed in pipeline. The depicted idiag value is five,
corresponding to Line 6 in Fig. 2. The number of parallel I-
lines for the idiag value is only five without pipelining angles
and that arises to twelve with the pipelining of three angles.
The OpenMP primitive parallel_for is added to parallel all the
I-lines of all JK-diagonal lines for a given idiag value, corre-
sponding to Line 7 in Fig. 2. In the implementation, MMI is
equal to the number of discrete angles per octant.

The maximum relative flux error is computed in all the cells
shown in Eq. (4). Like computing the iterative source, there
is no dependence among the computations of relative flux er-
ror in all cells. The OpenMP primitive parallel_for is also
applied to compute the maximum relative flux error in cells
of some I-line grid columns in parallel. The reduction func-
tion directive max is conducted to get the maximum among
the results of all the OpenMP threads:

Errormax = max | Φ(~r)i − Φ(~r)i−1
Φ(~r)i

| . (4)

B. Vector parallelism

In the thread-level parallelization, the granularity of dis-
tributing the tasks is one I-line grid column. Therefore, vec-
tor units can be used to exploit the parallelism in one I-line
grid column, shown in Fig. 4. Except for computing rela-
tive flux error and solving recursive Sn equations, all other
procedures of Sweep3D are easily vectorized due to the in-
dependence among the calculations of all cells in one I-line
grid column. Although the computations of relative flux error
for all cells are also independent, it is related to the division
operation and there is one branch, which is generated by the
judgement of the zero value. Thus, computing relative flux
error is processed by scalar units, rather than vector units in
MIC. In the following, we mainly describe the implementa-
tion of exploiting vector parallelism in solving of recursive
Sn equations.

For the solving of recursive Sn equations, the balanced
equation, shown in Eq. (2), is transformed to Eq. (5) in one
I-line grid column and the auxiliary equations are shown in
Eq. (6).

Φn(~r,Ωm) =
1.0

Di
[Qm + Ci · Φn(Ii,Ωm)i

+ Cj · Φn(Ji,Ωm)i

+ Ck · Φn(Ki,Ωm)i],

(5)

Φn(~r,Ωm)oI,J,K = 2Φn(~r,Ωm)− Φn(~r,Ωm)iI,J,K , (6)

where Φn(Ii,Ωm)i, Φn(Ji,Ωm)i, and Φn(ki,Ωm)i are the
input fluxes of the (i, j, k) cell in the I , J , K direction, re-
spectively; Φn(~r,Ωm)oI,J,K is the output flux in the I , J , K
direction of the (i,j,k) cell, respectively; Φn(~r,Ωm) is the
central flux of the cell for the current discrete angle; Di, Ci,
Cj , and Ck present the relative difference parameters. The
central flux Φn(~r,Ωm) can not be negative when the input
fluxes Φn(~r,Ωm)iI,J,K are non-negative in Eq. (5), while the
out fluxes Φn(~r,Ωm)oI,J,K obtained through Eq. (6) may be
negative. We can choose whether the negative fluxes should
be fixed up in the sub-procedure. If flux fixup is on, solv-
ing recursive Sn equations would be full of judgements and
branches like computing maximum flux error, and then is
hard to be vectorized. If flux fixup is off, there is still data
dependence in solving recursive Sn equations in I-line grid
columns. However, we can use loop unrolling and splitting to
implement the parallelization of the sub-procedure.

The parallelization of the simplified Sn recursion without
flux fixup is shown in Algorithm 1. The arrays B and C stores
Φn(~r,Ωm)i,oJ,K . The array phi stores Φn(~r,Ωm). it stands
for the problem size of the I dimension and is determined by
the geometry of the simulation. phiir stores the output and
input flux in the I direction of the (i, j, k) cell and is the de-
pendence variable in the sub-procedure. Thus, we can isolate
the computations (Lines 6–8) relating to phiir, and the left
parts (Lines 3–5 and 9–11) for cells in one I-line grid column
can be finished in a parallel way, respectively. The factor of
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Algorithm 1: Parallelization of the simplified Sn
recursion without flux fixup

input : Φn(~r,Ωm−1),Φn(~r,Ωm)iI,J,K
output: Φn(~r,Ωm),Φn(~r,Ωm)oI,J,K

1 if !do_fixup then
// Suppose that it could be divisible by

8
2 for i=0; i < it; i= i +8 do
3 for l=0; l < 8; l++ do in parallel
4 phi[i + l]←

1.0
D

(phi[i + l] + Cj ·B[i + l] + Ck · C[i + l]))

5 Ci ← Ci
D

6 for l=0; l < 8; l++ do
7 phi[i + l]← phi[i + l] + Ci · phiir
8 phiir = 2.0 · phi[i + l]− phiir

9 for l=0; l < 8; l++ do in parallel
10 B[i + l] = 2.0 · phi[i + l]−B[i + l]
11 C[i + l] = 2.0 · phi[i + l]− C[i + l]

loop unrolling is set to eight, so as to keep good data local-
ity in the sub-procedure. Compared to serial implementation,
only two memory store and one load operations are added, but
most operations of the sub-procedure are processed in paral-
lel. The implementation of Lines 9–11 in Algorithm 1 using
vector intrinsic functions on MIC is shown in Lines 14–18
of Algorithm 2. Further, the software pre-fetch operations
(Lines 8–9) are inserted to improve memory access cost. All
the vectorized procedures of MIC-based Sweep3D in Fig. 4
are implemented by the use of intrinsic functions.

Algorithm 2: Vectorization of the simplified Sn
recursion without flux fixup using intrinsic functions

input : Φn(~r,Ωm−1),Φn(~r,Ωm)iI,J,K
output: Φn(~r,Ωm),Φn(~r,Ωm)oI,J,K

1 __m512d v0, v1, v2, v3
2 if !do_fixup then
3 v0 = _mm512_set1_pd(2.0E + 00)

// Suppose that it could be divisible by
8

4 for i=0; i < it; i= i +8 do
5 . . .
6 _v1 = _mm512_load_pd((void∗)&B[i])
7 _v2 = _mm512_load_pd((void∗)&C[i])
8 _mm_prefetch(&B[i + 16], _MM_HINT_T0)
9 _mm_prefetch(&C[i + 16], _MM_HINT_T0)

10 . . .
11 for l=0; l < 8; l++ do
12 phi[i + l]← phi[i + l] + Ci · phiir
13 phiir = 2.0 · phi[i + l]− phiir

14 _v3 = _mm512_load_pd((void∗)&phi[i])
15 _v1 = _mm512_fmsub_pd(_v0, _v3, _v1)
16 _mm512_store_pd((void∗)&B[i], _v1)
17 _v2 = _mm512_fmsub_pd(_v0, _v3, _v2)
18 _mm512_store_pd((void∗)&C[i], _v2)

IV. PERFORMANCE RESULTS AND DISCUSSION

A. Experimental Setup

The experiment platform contains an eight-core Intel Xeon
E5-2660 CPU with 128GB of memory, a MIC coprocessor,
and a GPU coprocessor. The target MIC coprocessor includes
57 cores running the Intel MIC software stack. A C and For-
tran hybrid version of Sweep3D is implemented on MIC and
compiled by Intel C and Fortran compiler with level-three op-
timization. To compare MIC to GPU, the GPU version of
Sweep3D in Ref. [10] is used and compiled by the nvcc com-
piler with level-three optimization. Both codes run in the dou-
ble precision floating point. The specifications are described
in Table 1.

Table 1. Specification of the experiment platform
CPU Intel Xeon E5-2660, 8 cores, 2.2 GHz
MIC 57 cores, 4 threads/core, 1.1 GHZ, 5 G GDDR5

GPU Tesla K20C, 2496 CUDA Cores, 0.71 GHz,
Capability 3.5, 5 G memory

Operating System Linux Red Hat 4.4.5-6
Intel Compiler Intel v13.0.0, ifort, icc, OpenMP v3.1
Nvcc Compiler GCC v4.4.6, NVCC v6.0.1

In the simulation, we consider the vacuum boundary con-
dition, which corresponds to a zero incoming flux in the do-
main, and DSA face-current calculations. In addition, the Pn
scattering order is set to 1, and center (1/3)-cubed grid points
have a unit source in 3D geometry. The number of source it-
erations is set to four in Sweep3D. We run each instance of
Sweep3D ten times and take the shortest runtime as the in-
stance.

B. Performance under different optimizations

In order to get the best performance, the affinity type be-
tween the OpenMP threads and hardware cores is set to the
scatter type, and OpenMP threads can be allocated to as many
hardware cores as possible in MIC in the performance evalu-
ation.

The execution times of different optimizations without flux
fixup are shown in Fig. 5. As the total memory usage in-
creases with the number of spatial cells, the maximum prob-
lem size is set to 3203, in which a memory of 4201 MB is re-
quired. When the problem size is equal to 1283, the vectoriza-
tion can make the execution time decreases by 29% in com-
parison with the implementation of only exploiting thread-
level parallelism. When the problem size increases to 2563,
the reduction of the runtime can reach up to 50%. When the
maximum problem size is tested, a runtime reduction of about
44% is still obtained. Therefore, it’s important for the paral-
lelization of Sweep3D without flux fixup to do the vectoriza-
tion on MIC. However, the performance improvement by vec-
torization is far less than the number of operations one vector
unit can deal with simultaneously in MIC. The main reason is
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that the performance mainly depends upon the memory per-
formance of MIC due to the small ratio between floating point
operations and memory loads in Sweep3D. In other words,
the performance of the algorithm without flux fixup highly
relies on the off-chip memory bandwidth in MIC.
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Fig. 5. Execution times of Sweep3D on MIC under different paral-
lelizations and problem sizes when flux fixup is off. In the test, only
57 cores (228 threads) of the target MIC are used while the cores of
the host CPU are not applied.

Figure 6 shows the performance comparisons of Sweep3D
with the negative flux fixup between different optimizations.
When the problem size is 1283, the vectorization optimiza-
tion reduces the execution time only by 10%. When the prob-
lem size grows, the decrease in the runtime is at most 25%.
Compared to the runtime reduction by vectorization without
flux fixup, the decrease in the runtime with flux fixup is much
smaller. There are two main reasons for this phenomenon.
One reason is that the sub-procedure of solving recursive Sn
equations with flux fixup is full of judgement and hard to be
processed with vector units. The other reason is the propor-
tion of the runtime in solving recursive Sn equations in the to-
tal execution time with flux fixup is higher than that without
flux fixup. Therefore, the exploitation of thread parallelism
rather than vector parallelism is the key to get a high perfor-
mance from the discrete ordinates method with flux fixup on
MIC.

To assess the absolute performance of different optimiza-
tions, we apply the Roofline model [19] to the target MIC
(Fig. 7). The Roofline model can measure the maximum
performance an algorithm can achieve on a given hardware
architecture. The Roofline model can compare the perfor-
mance of a given algorithm on different systems, as well.
There are three basic factors in the Roofline model, includ-
ing the peak floating-point performance (GFlops/s), the peak
memory bandwidth (GBytes/s), and the operational intensity
(Flops/Byte). The peak performance and the peak memory
bandwidth rely on the hardware systems. Two horizontal
lines in Fig. 7 show the peak FLOPS under different op-

0

4

8

12

16

20

24

 1283        1603       1923        2243       2563        2883       3203

Ti
m

e 
(S

ec
on

ds
)

Problem size

 Multi-thread 
 Multi-thread+Vectorization

Fig. 6. Execution times of Sweep3D on MIC under different paral-
lelizations and problem sizes when flux fixup is on. In the test, only
57 cores (228 threads) of the target MIC are used while the cores of
the host CPU are not applied.

timizations, which are found through the hardware specifi-
cations of the target MIC. The peak memory bandwidth is
measured with the STREAM benchmark [20]. Using the
STREAM-BIG-C test, we obtain the peak memory band-
width of 80.62 Gbytes/s. The slanted line in Fig. 7 exhibits
the maximum performance an algorithm can reach, owing
to the limit of the memory bandwidth. The Operational In-
tensity (OI) means the number of FLOPS per byte of traffic
between the caches and memory, and is determined by the
algorithms. In Sweep3D, the wavefront sweeping subrou-
tine often takes more than 90% of the total runtime. Thus,
we only consider the wavefront sweeping subroutine in the
comparison between the theoretical performance and the ex-
perimental performance. Without flux fixup, the operational
intensity of the subroutine is constant for any problem size
and any source iteration step. With flux fixup, the operational
intensity increases with the number of flux fixup in the sub-
routine. Therefore there are different operational intensities
in different source iterations.

The comparison between theoretical performance and
experimental performance under different optimizations is
shown in Table 2. Without flux fixup, the operational
intensity of the wavefront sweeping procedure is about
0.3583 Flops/Byte. With flux fixup, the minimum and
maximum operational intensities in the four iterations are
0.3616 Flops/Byte and 0.3811 Flops/Byte respectively. As
seen from Fig. 7, the theoretical performance is given by
the product of the memory bandwidth and the operational
intensity due to the low operational intensities. The ex-
perimental results are obtained by measuring the execution
time of the wavefront sweeping subroutine of the MIC-based
Sweep3D. When flux fixup is off, the theoretical perfor-
mance is 28.89 Gflops/s and the maximum experimental per-
formance is 21.04 Gflops/s. When flux fixup is on, the theo-
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Fig. 7. Roofline model with ceilings for the wavefront sweeping
subroutine of Sweep3D on the target MIC. The graph is on a log-log
scale.

retical performance increases with operational intensity. The
experimental performance with the maximum operational in-
tensity is less than that with the minimum operational inten-
sity under the same optimizations. The chief reason is that
the fixup of flux leads to worsen the load balance between
the OpenMP threads. With flux fixup, the minimum theo-
retical performance is 29.15 Glops/s and the corresponding
maximum performance is 14.94 Gflops/s. Altogether, all the
experimental performances are lower than the theoretical per-
formances, and the maximum efficiency is about 72.8%. Two
factors incur the gap. One factor is that the varying thread par-
allelism along the sweep directions leads to load imbalance
among hardware threads and the exploited vector parallelism
is insufficient for filling up the SIMD pipeline of each core
in MIC. The other is the imperfection of the Roofline model,
which is just insightful. Actually, the obtainable peak mem-
ory bandwidth is influenced by the number of threads which
relies on the varying thread parallelism. Also, the synchro-
nization and scheduling overhead of many OpenMP threads
can’t be omitted and rises fast with the number of OpenMP
threads. But neither the variance of memory bandwidth nor
the overhead of multi-threading technology is included in the
Roofline model, so that the obtained theoretical performance
is high by using it.

Table 2. Comparison between prediction performance and ex-
perimental performance of the wavefront sweeping subroutine of
Sweep3D on MIC under different optimizations (the problem size
is 3203, the unit of performance is Gflops/s)
Flux fixup Off On
OI (Flops/Byte) 0.3583 0.3616 (Min) 0.3811 (Max)
Performance Pred. Expt. Pred. Expt. Pred. Expt.
Multi-thread 28.89 11.96 29.15 12.47 30.72 11.60
Multi-thread +
Vectorization 28.89 21.04 29.15 14.94 30.72 13.35

C. Performance comparison between MIC and GPU

Compared with GPU, the speedup of Sweep3D on MIC
under various problem sizes is shown in Fig. 8. The double
precision floating-point peak performance ratio of the target
MIC to GPU is about 0.85 : 1.00. The speedup gradually
increases with the problem sizes, whether the flux fixup is on
or not.
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Fig. 8. Speedup of Sweep3D on MIC compared to that on GPU
under various problem sizes.

Without flux fixup, MIC is inferior to GPU when the prob-
lem size is less than 2883. When the problem size is 1283, the
performance ratio of MIC to GPU is only 0.58 : 1.00. Only
when the problem size increases to 1923, is the performance
ratio roughly equal to the peak performance ratio. This phe-
nomenon is mainly caused by the insufficient utilization of
cores. The hardware cores in MIC act like the Streaming Mul-
tiprocessors (SMs) in GPU. There are 57 cores in the target
MIC, while there are only 13 SMs in the target GPU. There-
fore, the utilization of cores in MIC is worse than that in GPU
with the given small problem sizes. When the problem size is
greater than or equal to 2883, MIC is as good as GPU.

When the flux fixup is on, MIC is superior to GPU with
all examined problem sizes. When the smallest problem size
1283 is tested, the performance speedup between MIC and
GPU is 1.13 times. When the biggest problem size 3203 is
studied, a speedup of up to 1.67 times is procured. The GPU
architecture consists of simple cores, while the MIC architec-
ture is based on general-purpose cores. Thus MIC is much
better at processing the judgement expressions than GPU. As
stated in Sec. IV B, solving recursive Sn equations with flux
fixup includes many judgement expressions and is hard to be
efficiently parallelized with vector units in MIC as well as
SIMT units in GPU. Therefore, we can get much better per-
formance on MIC than GPU with flux fixup.
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D. Scalability with the number of cores

In order to effectively evaluate the variance of the perfor-
mance with the number of cores, the OpenMP threads are
bound to specific hardware cores in the scalability evalua-
tion. There are two primary ways to scale Sweep3D on MIC,
including strong scaling and week scaling. Strong scaling
means that more cores are applied to the same problem size
to get results faster. Weak scaling refers to the concept of
increasing the problem size as Sweep3D runs on more cores.

1. Strong scaling evaluation
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Fig. 9. Execution times of Sweep3D running on different number
of cores in MIC and speedup in comparison with the simulation on
only one core of MIC when flux fixup is off. The problem size is
2563.

Figure 9 shows the execution times of Sweep3D without
flux fixup running on different number of cores in MIC when
the problem size is 2563. The horizontal ordinate represents
the number of hardware threads which equals that of the cores
times that of hardware threads per core. One core consists of
four hardware threads in MIC. In order to take full advantage
of those four hardware threads, four OpenMP threads need
to be assigned to one core. Using all 57 cores in the target
MIC, there are 228 parallel hardware threads and, therefore,
the number of OpenMP threads are required to be 228. When
only one core is used, the runtime of Sweep3D is 170.08 sec-
onds. Two cores make the runtime reduce to 86.23 seconds.
The speedup of performance from 1 to 2 cores is about 1.97
times. When the number of cores increases to 32, the run-
time drops to 8.61 seconds and the speedup from 1 to 32
cores reaches 19.76 times. When all cores in the target MIC
are utilized, the runtime is 6.64 s and a 25.6-fold speedup is
achieved from 1 to 57 cores. Therefore, we can infer that the
runtime would diminish continually with more cores.

Figure 10 shows the performance of Sweep3D with a neg-
ative flux fixup running on different number of cores in MIC
when the problem size is 2563. As stated in Sec. IV B, the key
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Fig. 10. Execution times of Sweep3D running on different number
of cores in MIC and speedup in comparison with the simulation on
only one core of MIC when flux fixup is on. The problem size is
2563.

to achieving high performance with Sweep3D with flux fixup
on MIC lies in the exploitation of thread parallelism, rather
than vector parallelism. Therefore, a much bigger speedup
can be reached when more cores or hardware threads are em-
ployed. The speedup of performance from 1 to 32 cores is
about 22.78 times, while it reaches 34.59 times from 1 to 57
cores.
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Fig. 11. Speedup of Sweep3D running on all 57 cores of MIC in
comparison with that on only 1 core under different problem sizes.

Figure 11 exhibits the speedup of performance from 1 to
57 cores when Sweep3D runs under different problem sizes.
Without flux fixup, the speedup rises gradually with problem
size at the beginning. As the problem size is equal to 2563,
the maximum speedup of 25.61 times is obtained. But under
larger problem sizes, a plateau is reached and even tiny drops
can be observed. This is because the simulation without flux
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fixup is limited by the peak memory bandwidth and so more
parallelism with larger problem sizes can’t be efficiently ex-
ploited by parallel cores. Hence, the maximum strong scaling
efficiency is about 45% without flux fixup. With flux fixup,
the speedup increases continuously with problem size. When
the problem size reaches 3203, the speedup from 1 to 57 cores
achieves 35.90 times. Therefore, the maximum strong scal-
ing efficiency can reach 63% with flux fixup. However, the
strong scaling efficiency is not high in all cases. The runtime
is chiefly determined by wavefront sweeping in Sweep3D.
The number of parallel I-lines in wavefront sweeping first in-
creases from one and then decreases to one with particle flow-
ing, shown in Fig. 1. Thus there are load imbalance among
cores when more than one core is utilized. The application of
more cores will further aggravate the load imbalance and then
the utilization efficiency of the cores reduces with the number
of cores. As a result, the obtained strong scaling efficiency is
not high.

2. Weak Scaling Evaluation

Table 3 shows the execution times of Sweep3D running on
different number of cores in MIC. For the problem sizes, the
sizes of the I and J dimensions are both fixed to 256, and the
size of the K dimension keeps a linear relationship with the
number of utilized cores in MIC. When the number of cores is
less than or equal to 16, the runtime exhibits small variations
with the problem sizes. When more than 16 cores are used,
the runtime changes greatly with the problem size. A chief
cause is also the load imbalance that the changing parallelism
incurs in the sweeping. The load imbalance sharply wors-
ens under more than 16 cores and the corresponding problem
size, and therefore the runtime increases rapidly. Without
flux fixup, the runtime under only one core is 7.25 seconds
and rises to 11.59 seconds finally. Hence the weak scaling
efficiency is about 63% when flux fixup is off. With flux
fixup, the execution time is 14.66 seconds at the beginning
and grows to 17.59 seconds at the end. Thus, a weak scaling
efficiency of 83% is reached when flux fixup is on.

Table 3. Execution times of Sweep3D when the problem sizes in-
crease linearly with the number of utilized cores in MIC
No. of core Problem size Runtime (s)
× hardware Without With
thread/core flux fixup flux fixup
1 × 4 256×256× 8 7.25 14.66
2 × 4 256×256× 16 7.08 14.60
4 × 4 256×256× 32 7.28 14.27
8 × 4 256×256× 64 7.23 14.33
16 × 4 256×256× 128 7.75 14.90
32 × 4 256×256× 256 8.61 15.67
57 × 4 256×256× 456 11.59 17.59

Overall, the results above show that our implementation
has good scalability on MIC, regardless of whether fix fixup
is on, and can also achieve good performance on MIC with
more cores.

E. Compare with previous work

The difference between the new implementation in this pa-
per and our old one [13] is that the software pre-fetch tech-
nology is utilized to improve the memory access cost in the
vectorization of our new implementation. For the problem
size 2563, the new implementation and the old one cost 6.64
and 6.78 seconds, respectively, disabling flux fixup and using
all 57 cores in MIC. When only one core in MIC is utilized,
the execution times are 170.08 and 187.37 seconds, respec-
tively. With flux fixup, the new costs are 10.32 seconds on all
cores and 356.98 seconds on one core. Correspondingly, the
old demands 10.41 and 370.49 seconds. So the minimum and
maximum performance improvements of our new implemen-
tation based on the old one are 0.93% and 10.17% respec-
tively. Thereby, our new implementation shows better perfor-
mance portability with the number of cores in MIC than the
old one.

V. CONCLUSION AND FUTURE WORK

In this paper, the parallel programming model, OpenMP,
and vector intrinsic functions are used to implement the par-
allelization of Sweep3D on MIC. All the three procedures of
Sweep3D are processed in parallel. Except for computing
relative flux error and solving recursive Sn equations with
flux fixup, all other sub-procedures of Sweep3D are vector-
ized on MIC. We evaluate the influence of different paral-
lel optimizations to the performance and apply the Roofline
model to access the absolute performance of the optimiza-
tions. The results show that the performance of the algorithm
is determined by the number of cores and the off-chip mem-
ory bandwidth in MIC without flux fixup, while the speed
of the algorithm is mainly dependent on the number of cores
in MIC with flux fixup. The scalability of the MIC-based
Sweep3D with the number of cores is investigated. The in-
vestigation demonstrates that the MIC-based implementation
has good scalability in performance with the Intel MIC archi-
tecture. Moreover, the comparison between our implementa-
tion on MIC and the prior running on Tesla K20C GPU is also
discussed.

In the future, the performance and scalability issues of
Sweep3D on heterogeneous CPU/MIC clusters like Tianhe-
2 supercomputer will be studied.
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