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This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with
an algorithm based on compressed sensing (CS) and Otsu’s method, which could reconstruct binary CT image
of test object from incomplete detection data. According to binary CT image characteristics, we employ Split-
bregman method based on L1/2 regularization to solve piecewise constant region reconstruction. To improve the
reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu’s method
as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,
and compare reconstructed results from different reconstruction methods. Finally, the experimental results
demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct
high-quality binary image from incomplete detection data.
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I. INTRODUCTION

X-ray computed tomography (CT), an technique for clinic
diagnostics at first, has been developed into industrial CT
system for non-destructive detection in aerospace, geology,
weapons, metallurgy, etc. [1–5]. Test objects consisting of
single composition materials, such as engine, rock specimen,
teeth, etc. are used in CT imaging [6, 7], so CT images of
these test objects can be considered as binary images that have
only two gray values (i.e., black and white). They can be
modeled as piecewise constant matrix, and easily sparsified
by proper orthogonal transformation in reconstruction [8, 9].
Binary CT image reconstruction is a key technique, for im-
age reconstruction from incomplete projection data by some
continuous tomography methods [10, 11]. Also, there are
some discrete tomography methods for binary CT image re-
construction from few-view projections [12–15]. In industrial
CT systems, scan time is very long due to large size of test ob-
ject and too many projection views [4, 5]. Test object recon-
struction from few-view projections can reduce scan time. In
medical CT systems [8], biomedical samples reconstruction
from few-view projections is conducive for reducing the radi-
ation dose.

Conventional reconstruction algorithms (i.e., filter back-
projection and algebraic reconstruction techniques) cannot re-
construct high-quality CT image from incomplete projection
data [1]. Interestingly, compressed sensing (CS) theory can
reconstruct high-quality images from less projection data than
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what is usually considered necessary according to the Nyquist
sampling theory [16–18]. The main idea of CS theory is that
an image can be reconstructed from a rather limited amount
of data as long as an underlying image can be sparsely rep-
resented in an appropriate domain and determined from these
data [19–21]. Also, some advanced algorithms make use of
some priori information in CT image reconstruction to reduce
projection data greatly [22, 23]. Thus, it is feasible to recon-
struct binary CT image from incomplete projection data using
the CS-based reconstruction algorithm and some priori infor-
mation.

In this paper, we focus on binary CT image reconstruction
from incomplete projection data in non-destructive detection,
and propose an algorithm based on CS and Otsu’s method.
To improve quality of reconstructed image, we employ Split-
bregman method with L1/2 regularization [24], which can
produce sparser solution compared with the L1 regulariza-
tion method used in CT image reconstruction. Meanwhile,
we also use a priori knowledge of gray value information and
Otsu’s method [25] as the optimization constraint in recon-
struction process, which can segment and extract gray value
information of binary image. The remainder of this paper is
organized as follows. Our reconstruction algorithm is pro-
posed in Sec. II, images reconstructed using different meth-
ods are compared in Sec. III, and in the last section, the image
reconstruction process and results are discussed.

II. MATERIALS AND METHODS

In CT imaging, it is of significance to reduce scan time or
radiation dose, which, in turn, determine the detection data
completeness. Currently, the CS-based reconstruction algo-
rithm is easier to take into account incomplete projection data
during the reconstruction process and make a better perfor-
mance. We propose here an algorithm based on CS theory and
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Otsu’s method to reconstruct binary CT images from incom-
plete detection data in non-destructive detection. In the fol-
lowing, we will summarize the proposed algorithm scheme.

It has been widely accepted that a CT image reconstruction
can be modeled as a linear system

Af = b, (1)

where b =
(
b1, · · · , bM

)
∈ RM represents the detection

data, f = (f1, · · · , fM ) ∈ RN denotes the image object, and
A = (aij) is the measurement matrix.

The CT image reconstruction method can be empowered
by the CS technique to reduce the necessary datasets and im-
prove the image quality under many less favorable conditions.
The CS-based reconstruction method can be expressed as

min
f
E(f), subject to Af = b and f > 0, (2)

where E(f) is the regularization function. Then, we can use
the penalty function method to convert Eq. (2) into an uncon-
straint optimization problem

min
f
E(f) + λ ‖ b− Af ‖22 . (3)

In CS theory, it is difficult to apply L0 norm, the most ideal
regularization norm, in image reconstruction [26, 27]. Thus,
L0 norm is commonly replaced by L1 norm in CT image re-
construction [28, 29]. Theoretically, L1/2 norm is closer to
L0 norm, which can produce sparser solution and reconstruct
high-quality CT images [30, 31]. We propose an algorithm
based on L1/2 regularization to solve binary image recon-
struction problem [24]: using L1/2 norm as the regularization
norm and gradient transformation as the sparse transforma-
tion, Eq. (3) can be redefined as

f = argmin
f

‖ φ(f) ‖1/21/2 +β ‖ b− Af ‖22, (4)

where φ(f) is the sparse transformation. Using an intermedi-
ate variable d = φ(f), Eq. (4) can be converted into

f = argmin
f,d

‖d‖1/21/2 + β ‖b− Af‖22 + ρ ‖d− φ(f)‖22 . (5)

Then we can use Split-bregman method [32, 33] to convert
Eq. (5) into two unconstrained optimal problems:

(fk+1, dk+1) = argmin
f,d

‖d‖1/21/2 + β ‖b− Af‖22

+ ρ
∥∥d− φ(f)− bk∥∥2

2
,

(6)

bk+1 = bk +
(
φ(fk+1)− dk+1

)
. (7)

To solve Eq. (6), we can split it into Eqs. (8) and (9):

fk+1 = argmin
f

β ‖b− Af‖22 + ρ
∥∥dk − φ(f)− bk∥∥2

2
, (8)

dk+1 = argmin
d
‖d‖1/21/2 + ρ

∥∥∥d− φ(fk+1)− bk
∥∥∥2
2
. (9)

Here, Split-bregman method based on L1/2 regularization
can reconstruct high-quality binary image from few-view pro-
jections [24].

In order to improve the quality of reconstructed binary im-
age from incomplete detection data, we utilize a priori knowl-
edge of the two gray values and a segmentation mechanism
(Otsu’s algorithm) in reconstruction process. In Otsu’s al-
gorithm [25, 34], the normalized histogram of reconstructed
image is p[m], m ∈ [mmin, mmax], where [mmin,mmax] is
the gray-level range. Setting a threshold T ∈ [mmin,mmax]
to divide the gray-level range into two classes ([mmin, T ] and
[T +1,mmax]), the reconstructed binary image can be divide
into two gray value regions. The class separability associated
with T is defined as

S2(T ) = w0(µ0 − µ)2 + w1(µ1 − µ)2 = w0w1(µ1 − µ0),
(10)

where w0(T ) =
∑
p[m](m = mmin → T ), w1(T ) =∑

p[m](m = T + 1 → mmax), µ0(T ) =
∑
mp[m](m =

mmin → T ), µ1(T ) =
∑
mp[m](m = T + 1 → mmax),

and µ =
∑
mp[m](m = mmin → mmax). The purpose

of Otsu’s algorithm is to search an optimal threshold T ′ to
maximize S2(T ),

T ′ = argmax
T

[S2(T )], (11)

and this method can localize the reconstructed image struc-
ture information in non-destructive detection. In our algo-
rithm, Otsu’s method calculates the optimal segmentation
threshold T , and segment the reconstructed image with two
parts. Meanwhile, the priori knowledge (the true gray value)
is used to determine the gray value of each part. Finally, we
use the segmented image as an intermediate image in next
iterative loop.

In the implementation, the whole iteration process of our
proposed algorithm can be summarized as follows:

Step 1 Initialize reconstructed image f = 0;

Step 2 Input measured data b, and calculate intermediate im-
age fART using ART algorithm:

For i = 1, 2, . . . , Nangle

fk+1 = fk + λ
aij∥∥Ai
∥∥2 (bi − Aifk), k = 0, 1, ...; (12)

End

Step 3 Positivity constraint for fART using Eq. (13):

f =
{
fi,j , fi,j ≥ 0
0, fi,j < 0

; (13)

Step 4 Update the intermediate image fSB using the Split-
bregman method based on L1/2 regularization.
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For k = 1, 2, . . . , NSB

fk+1 = argmin
f

β ‖b− Af‖22 + ρ
∥∥dk −∇f− bk

∥∥2
2
; (14)

dk+1 = min
d
‖d‖1/21/2 + ρ

∥∥∥d−∇fk+1 − bk
∥∥∥2
2
; (15)

bk+1 = bk + (∇fk+1 − dk+1); (16)

End

Step 5 Update the intermediate image fOtsu using Otsu’s
method, and calculate optimal segmentation threshold
T ′,

T ′ = argmax
T
{w0(T )w1(T )(µ1(T )− µ0(T ))} ; (17)

Step 6 Initialize next iteration image f :

f = (1− δ)fSB + δfOtsu, 0 < δ < 1; (18)

Step 7 Go to Step 2 until the stopping criterion is met.

In our algorithm, some key parameters are selected accord-
ing to experimental analysis. The constraint factor λ in ART
method is determined to accomplish initialization reconstruc-
tion. Two important parameters of β and ρ in Split-bregman
method are determined based on L1/2 regularization to real-
ize optimization reconstruction. Finally, the scale factor δ is
determined to combine Split-bregman method based on L1/2

regularization and Otsu’s method. For better reconstruction
results, reconstruction errors are calculated to obtain optimal
parameters of experiments.

III. RESULTS

To demonstrate the feasibility of our proposed method in
non-destructive detection, numerical simulations were per-
formed with three binary phantoms, i.e the mandible, turbine
blade and limestone phantoms in Fig. 1. The pixel size is
256 × 256. The binary mandible phantom was derived from
a real mandible CT image, which contains teeth region and
bone region; the binary turbine blade phantom having two
gray levels (0 and 1) and containing turbine blade and back-
ground regions, was derived from a turbine blade CT image;
and the binary limestone phantom, derived from a rock speci-
men CT image, has two gray levels (0 and 1) and contains sur-
rounding rock region, internal porosity region (air) and back-
ground region (air).

Here, a typical parallel-beam geometry of the CT sys-
tem is assumed. To compare and analyze reconstruction
results, algebraic reconstruction technique (ART) [35], to-
tal variation based algebraic reconstruction technique (ART-
TV) [28], Split-bregman method based on L1/2 regularization
(SB-L1/2) [24], and our method, i.e. Split-bregman method
based on L1/2 regularization and Otsu’s method (SB-Otsu),

Fig. 1. The mandible phantom containing teeth and bone regions (a),
the turbine blade phantom consisting of alloy material (b) and the
limestone phantom containing surrounding rock and internal poros-
ity (c). Image (a) was from a real mandible CT measurement, and
Images (b ) and (c) were scanned by industrial CT system.

were used to reconstruct the three phantoms, respectively, in
the iteration numbers of 200 for all the reconstruction process.
The ART was implemented in Eq. (12). The ART-TV were
implemented in two loops, the outer loop implementing ART
to reduce data discrepancy, and the inner loop to minimize
image’s TV. In the inner loop, the gradient descent method
was used:

‖∇f‖1 =
∑
i,j

gi,j ,

gi,j =

√
(fi,j − fi+1,j)

2
+ (fi,j − fi,j+1)

2
,

(19)

where ‖∇f‖1 denotes TV of f, fi,j is the pixel value of the
discrete 2D image, and gi,j is discrete gradient.

f(m+1) = f(m)–γωυ/|υ|, (20)

where γ is the gradient descent control coefficient, ω =

‖f(m+1) − f(m)‖2 is the scaling coefficient of the gradient
descent, υ = (∂‖∇f‖1/∂fi,j)fi,j=fi,j [n,m] is the gradient di-
rection when fi,j = fi,j [n,m]. The implementation of Split-
bregman method based on L1/2 regularization was mainly
used in Eqs. (14)–(16). Finally, we analyzed key parameters
of the reconstructed algorithms, and the values of optimal pa-
rameters are λ = 0.5, β = 1000, ρ = 1, δ = 0.2 and γ = 0.2.

In binary mandible phantom reconstruction, the angular
scanning was from 0◦ to 180◦ in 30◦ steps, producing 6 pro-
jections. Then we added 0.5% Gaussian noise into projec-
tion data, and the reconstructed results using different meth-
ods are shown in Fig. 2A. In binary turbine blade phantom
reconstruction, the angular scanning was from 0◦ to 180◦ in
18◦ steps, producing 10 projections. We added 0.5% Gaus-
sian noise into projection data and used the 10 projections
to reconstruct the turbine blade phantom (Fig. 2B). In binary
limestone phantom reconstruction, the angular scanning was
from 0◦ to 180◦ with 22.5◦ steps, producing 8 projections.
Then we added 0.5% Gaussian noise into projection data, and
the reconstructed results using different methods are shown in
Fig. 2C.

Then, the root mean square error (RMSE) in Eq. (21) was
used to quantify the reconstructed results,

RMSE = [
∑

(fi,j − f̂i,j)2/Nf ]
1/2, (21)
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Fig. 2. Images of the binary (A) mandible (B) blade and
(C)limestone phantoms, reconstructed using (a) ART, (b) ART-TV,
(c) SB-L1/2, and (d) SB-Otsu methods. The display window for the
images is [0,1].

where f̂i,j is the reconstructed pixel value, fi,j is the true
pixel value, and Nf is the pixel number of the phantom.
The RMSE values for the two reconstructed phantoms using
different methods are summarized in Table 1, and the iterative
process curves for these reconstructed algorithms are shown
in Fig. 3.

TABLE 1. RMSE values for the three reconstructed phantoms using
different methods
Phantoms ART ART-TV SB-L1/2 SB-Otsu
Mandible 0.1319 0.0954 0.0753 0.0534
Turbine blade 0.1372 0.1308 0.1287 0.0864
Limestone 0.0728 0.0391 0.0334 0.0275

From Fig. 2, the reconstructed images using ART methods
contain a lot of noise and artifacts, while the reconstructed
images using ART-TV, SB-L1/2 and SB-Otsu methods have
clearer edges. From Table 1, the SB-Otsu method performed
better in binary CT image reconstruction from severe incom-
plete projection data than other three methods. It is more
effective in treating noise and artifacts. From Fig. 3, SB-Otsu
algorithm can reconstruct higher quality binary CT images
with the same iteration numbers.

IV. DISCUSSIONS AND CONCLUSION

In CS theory, an image can be reconstructed from a rather
limited amount of detection data as long as it can be sparsely
represented in an appropriate domain and determined from
these data. From the results in Sec. III, the CS-based method
is effective in treating noise and artifacts for the reconstructed
images from incomplete detection data. However, the CS-
based algorithm is not omnipotent, the reconstructed images
may suffer the loss of some detail information due to severe

Fig. 3. (Color online) RMSE lines of image reconstruction using
different algorithms in 200 iterations. (a) mandible phantom recon-
structed from 6 projections, (b) turbine blade phantom reconstructed
from 10 projections, (c) limestone phantom reconstructed from 8
projections.

incomplete detection data. In order to improve reconstructed
image quality from severe incomplete detection data, a pri-
ori knowledge of gray value information and a segmentation
mechanism (Otsu’s method) are introduced into binary CT
image reconstruction.

There are still some issues worth further discussion in this
paper. First, the amount of projection data used in recon-
struction depends on the structure of reconstructed image in
our study. More complex the structure of reconstructed image
is, more projections reconstructing high-quality image needs.
Second, the correlation of projection vectors also determines
the quality of reconstructed image. Weaker the correlation
of projection vectors is, higher the quality of reconstructed
image is. Third, our proposed algorithm combines Split-
bregman method based on L1/2 regularization and Otsu’s
method. In reconstruction process, we need to set a proper
weighting coefficient δ for Otsu’s algorithm implementation.
If the value of weighting coefficient δ is too large, the qual-
ity of reconstructed image will be lowered. In our study, we
select the value of weighting coefficient δ according to exper-
imental analysis.

Currently, we analyze three binary image phantoms: a
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mandible phantom, a turbine blade phantom and a limestone
phantom. The limestone and turbine blade phantoms are
tested by industrial CT, our proposed method can reconstruct
these two phantoms from few-view projections to reduce scan
time. The mandible phantom is scanned by the medical CT
system, our proposed method can reconstruct mandible phan-
tom from few-view projections to reduce radiation dose. This
initial methodological study is mainly focused on phantom
simulation analysis, the follow-up study will deal with more
general settings for industrial and biomedical applications.

In conclusion, we proposed a binary CT image recon-
struction algorithm based on compressed sensing and Otsu’s
method to reduce scan time or radiation dose in non-
destructive detection, and investigated the feasibility and po-
tential of the proposed method. The experimental results
demonstrated that our proposed method is very effective to
reduce noise and suppress artifacts in binary CT image recon-
struction from incomplete projection data. In further work,
we will analyze real data reconstruction, and a systematic
study is beyond the scope of this initial investigation.
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