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High brightness γ-rays produced by laser Compton scattering (LCS) are ideal probes for the study of nucleon
and nuclear structure. We propose such a γ-ray source using the backscattering of a laser from the bright elec-
tron beam produced by the linac of the Shanghai Soft X-ray Free-electron Laser (SXFEL) test facility at the
Shanghai Institute of Applied Physics (SINAP). The performance is optimized through theoretical analysis and
benchmarked with 4D Monte-Carlo simulations. The peak brightness of the source is expected to be larger than
2 × 1022 photons/(mm2 mrad2 s 0.1%BW) and photon energy ranges from 3.7 MeV to 38.9 MeV. Its perfor-
mance, compared to Extreme Light Infrastructure-Nuclear Physics (ELI-NP), and the Shanghai Laser-Electron
Gamma-ray Source (SLEGS), is given. The potential for basic and applied research is also briefly outlined.
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I. INTRODUCTION

Over the past decades, with remarkable advancements in
the fields of high intensity lasers and high brightness elec-
tron beams, laser Compton scattering (LCS) light sources [1],
based on a process in which relativistic electron beams scat-
ter lasers to produce quasi-monochromatic X-rays or γ-rays,
have found a broad range of applications. At photon ener-
gies below 100 keV, although storage ring light sources [2]
and X-ray free electron lasers [3] can produce X-rays at
higher brightness, LCS light sources offer attractive, com-
plementary capabilities at a smaller fraction of the cost and
size [4] for medical applications [5–9]. At γ-ray photon en-
ergies, LCS light sources will produce the highest bright-
ness, enabling a variety of applications [10–14], including
nuclear physics [10–13], nuclear astrophysics [11], polarized
positron beams [15], polarized neutron beams [16], produc-
tion of medical radioisotopes [17], nondestructive detection
of radioactive isotopes [18], assay of nuclear materials [18],
etc.

Although the Compton effect was discovered in the early
1920’s by A. H. Compton as his Nobel-Prize-winning work, it
was not until 1960’s that a method of very high energy γ-rays
via the LCS process in charged particle accelerators was pro-
posed independently by Milburn [19], and Arutyunyan and
Tumanyan [20]. While a number of successful demonstra-
tions of the LCS concept have been made through the years,
the γ-ray yield was quite low [21–23]. In 1978 the first γ-ray
LCS facility, the Ladon project, was brought into operation
in Frascati [24]. It was followed by several new LCS γ-ray
facilities, including LEGS@NSLS[25] and HIγS@DFELL
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in the US [26], GRAAL@ESRF in France [27], ROKK in
Russia [28], and LEPS@SPring-8 in Japan [29, 30]. Among
these facilities, Ladon, LEGS, and GRAAL were decommis-
sioned in 1993, 2006, and 2008, respectively, HIγS and LEPS
are still active for low energy nuclear structures, nuclear as-
trophysics, and hadron physics studies. There is still grow-
ing interest in building new γ-ray facilities in storage ring
light sources, e.g., LCS γ-ray sources at the TERAS [31],
SAGA [32], UVSOR-II [33], LEPS2 [35], and NewSUB-
ARU [34] in Japan. The HIγS team also proposed the HIγS2
project [36] to further increase the photon flux. Some newly
built 3rd generation light source facilities are also pursuing
to integrate γ-ray sources in their storage rings, e.g. PLS in
Korea [37], ALBA in Spain [38], CLS in Canada [39], MAX-
IV in Sweden [40], DAΦNE at LNF-INFN in Italy [41], and
SSRF in China [42].

With the introduction of a photocathode radio-frequency
(RF) electron gun, the linac electron beam quality has been
improved dramatically during the last decades. As pointed
out in Ref. [43], linac based LCS light source holds great
promise for compact X-rays. There are currently many efforts
all over the world for the development of such kind of X-rays,
e.g. ATF at BNL [44] and PLEIADES at LLNL [45, 46] in the
US, PHOENIX at HZDR in Germany [47], AIST at ETL [48],
LUCX [49] and STF [50] at KEK in Japan, TTX at Tsinghua
University [51] in China, and etc. For the γ-ray energies, col-
liding lasers with high quality electron beam from linac of-
fers opportunities for generation of γ-rays with an exception-
ally narrow spectral width (< 0.1%) for photo-nuclear exper-
iments, especially to conduct nuclear resonance fluorescence
experiments [52, 53]. LLNL made an important step forward,
producing a mono-energetic MeV-level γ-ray source [54, 55],
enabling entirely new isotope-specific applications of impor-
tance to material science, medicine, industry, and engineer-
ing, which opens up a new era of nuclear photonics [14, 56–
58]. With its great success, X-band techniques based on the
MEGa-ray project [59, 60] at LLNL is under development.
It is followed by the Extreme Light Infrastructure-Nuclear
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Fig. 1. (Color online) Schematic layout of the SXFEL project.

Physics (ELI-NP) project [61, 62], a major facility of the Nu-
clear Physics Long Range Plan in Europe [63]. ELI-NP, now
under construction in Bucharest-Magurele, Romania, will be
one of the three pillars of ELI and will consist of two com-
ponents: a very high intensity laser beam and a very intense
(1013 γ/s), brilliant γ beam, 0.1% bandwidth, with γ photon
energy up to 19 MeV, which will create a new European lab-
oratory with a broad range of science covering the frontier of
fundamental physics, new nuclear physics and astrophysics
as well as applications in diverse fields.

In this paper, we propose a high brightness, narrow band-
width γ-ray source by using the high brightness electron
beam from the linac of the Shanghai Soft X-ray Free-electron
Laser (SXFEL) facility [64]. The main parameters of SXFEL
will be described in Sec. II. In the following Section, the ana-
lytical optimization benchmarked with 4D Monte-Carlo sim-
ulations will be presented. Its performance will be compared
to ELI-NP and the Shanghai Laser Electron Gamma Source
(SLEGS). The potential opportunities offered by combining
bright X-ray and γ-ray will be briefly outlined. Some con-
cluding remarks will be given in the last section.

II. SHANGHAI SOFT X-RAY FREE-ELECTRON LASER
TEST FACILITY

The SXFEL test facility is currently under construction in
the SSRF campus, with the primary purpose of delivering
fully coherent radiation at the wavelength of about 8.8 nm.
With energy upgraded to 1.3 GeV, it is possible to push the
X-ray wavelength down to the water window (∼3 nm) and
even the magnetic window (∼1 nm). As shown in Fig. 1, this
facility is based upon an electron linac, composed of a pho-
toinjector, hybrid S-band and high gradient C-band accelera-
tors, and 2 bunch compressors. The X-ray FEL is produced in
a two-stage cascaded harmonic generation undulator system,
and its performance is characterized in the X-ray transport
and diagnostic system at the end. The main parameters of
SXFEL is shown in Table 1.

III. PROPOSAL FOR A HIGH BRIGHTNESS γ-RAY
SOURCE AT THE SXFEL

A. Basic considerations

As previously mentioned, the narrow bandwidth and high
brightness γ-ray source has been long cherished by many re-

TABLE 1. Main parameters of the SXFEL project.
Parameters Baseline Upgrade Unit
e- beam energy 0.84 1.3 GeV
e- energy spread <0.15% <0.15%
e- bunch charge 0.5 0.5 nC
e- normalized emittance <1.5 <1.5 mm mrad
e- pulse length (FWHM) <1 < 1 ps
e- beam current 500 500 A
e- repetition rate 10 10 Hz
FEL wavelength 8.8 3 nm
FEL power >100 >100 MW
FEL pulse length <150 <150 fs

search fields. We propose here to build a high brightness γ-
ray source using the LCS mechanism based on the SXFEL
linac with the energy of the electron beams ranging from 400
to 1300 MeV. As shown in Fig. 1, the γ-ray source will be
located at the 2nd branch, and the colliding laser will share
the same laser hutch of the seed laser of SXFEL.

We chose head-on interaction geometry to make the over-
lap between the electron and the laser beam larger. This
source is capable to produce photon energies ranging from
3.7 MeV to 38.9 MeV of γ-rays through a Doppler up-shift of
800 nm Ti: Sapphire laser beams by a factor of 4γ2EL/(1 +
4γ2EL/Ee). In order to obtain a narrow bandwidth photon
beam, we should study a variety of factors which may have
impact on the γ-ray spectrum. For realistic laser-electron
interactions, the laser and electron beams at the interaction
point have their intrinsic divergences and energy spreads.
These non-ideal factors determine the bandwidth of the scat-
tered photon beam. The relative energy spread of the scat-
tered photons generated by the electron beam energy spread
is quite simple, ∆Eγ/Eγ = 2∆Ee/Ee; by which the laser
is natural bandwidth is the same as the laser bandwidth,
∆Eγ/Eγ = ∆Eλ/Eλ; by the intrinsic divergence of the
electron beam scales as, ∆Eγ/Eγ = [εn/re]

2, where εn and
re are the normalized emittance and beam radius of the elec-
tron beam, respectively. The nonlinear effect associated with
the laser intensity will also cause spectral broadening due to
the inhomogeneous pondermotive forces during the course of
the laser pulse changes in the electron’s longitudinal veloc-
ity and leads to a variable redshift during scattering [65–74].
As pointed out in Ref. [71–73], even in the so-called non-
relativistic regime, nonlinear effects may become significant
if the pulses become relatively long. These nonlinear effects
yield important spectral broadening.

In summary, for the analytical optimization of the perfor-
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mance of the γ-ray source, the main goal is to maximize the
on-axis spectral brightness and to reduce the bandwidth and
related parameters, including the beam size, emittance of the
electron beam, and the beam size, pulse duration of the laser
beam. Hereafter, we assume that the pulse energy of the
laser is limited to 100 mJ. The performance optimization is
based on theoretical work by Hartemann et al. [71–73, 75]
and Petrillo et al. [74, 76], as well as MC simulation code

developed by Luo [77].

B. Performance optimization: linear and nonlinear regime

It’s found [75] that in the linear regime the peak on-axis
brightness is,
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where Ne = q/e is the number of electrons in the bunch, ∆τ
is the bunch duration, ε is the normalized emittance, γ0 is
beam energy, and δγ is the energy spread. Nλ = W/(~ω0)
is the total number of photons in the laser pulses, w0 is the
1/e focal radius, r0 = 2.82 × 10−15 m is the classical elec-
tron radius, and Φ(x) = (2/
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√
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√
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beta function, where rb is the radius at the focus of electron
beam, ∆t is the laser pulse duration, and z0 = πw2

0/λ0 is the
Rayleigh length. χ = ωx/4γ

2
0ω0 is the normalized upshifted

frequency and δω = ∆ω/ω0 is the relative spectral width of
laser pulse.

In the nonlinear regime, when spectral broadening induced
by the inhomogeneous laser pondermotive force during the
interaction is considered, the brightness reads,
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where ρ(z̄) = 1 + A2
0e
−z̄/2(1 + µ2z̄2), with A0 being the

maximum laser normalized vector potential.

At a given beam emittance, while tight focal size of the
electron beam will cause a significant broadening of the spec-
trum, loosening the spot size can produce a narrower spec-
trum, but will decrease the overall spectral brightness of the
source due to reduced electron density. It’s therefore an
optimum beam size for the highest γ-ray beam brightness
that can be found. With the normalized emittance equal to
1.5 mm mrad (see Table 1), Figure 2 shows the peak spectral
brightness for four different values of the electron beam focal
radius: 5, 15, 20 and 25 µm. The spectral broadening due to a
large divergence for a small beam size is clearly shown. Fig-
ure 3 shows the peak spectral brightness as a function of the
electron beam focal radius with/without the nonlinear spectral
broadening effect. One can see that the brightness variation
as the electron beam size is not very sensitive, since it de-
pends on the combined effects of divergence induced spectral
broadening and the laser-e beam overlap integral. In order
to achieve narrower bandwidth, we prefer to use a relatively

large electron beam size, as shown in Fig. 2. Therefore, 20 µm
is chosen as the working value of the e-beam size.

Fig. 2. (Color online) Peak spectral on axis brightness for different
electron beam sizes.

As the scaling laws (Eq. (1) and Eq. (2)) suggest, the
peak spectral brightness of LCS light sources is proportional
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Fig. 3. (Color online) Peak brightness as a function of the electron
beam focal radius (blue: linear, black: nonlinear).

to the electron beam brightness. For a fixed beam size,
large emittance means large divergence, and the divergence-
induced spectrum broadening decrease the peak brightness
rapidly. Moreover, reducing the beam emittance to around
0.5 mm mrad, the peak brightness would be increased by a
factor of ∼3.

Fig. 4. (Color online) Peak spectral on-axis brightness as a func-
tion of the normalized Doppler-shifted frequency. χ, and laser pulse
duration, ∆t.

In the case of Fourier-transform-limited laser pulses, the re-
lation between the pulse duration, ∆t, and the spectral band-
width, ∆ω, satisfies: ∆ω∆t =

√
2. For large values of the

laser pulse duration, the laser bandwidth is narrow, and the
normalized vector potential is small, which allows for mini-
mal linear and nonlinear spectral broadening. However, the
overlap integral becomes small as the normalized parame-
ters, η and µ, become large. Conversely, for ultrashort laser
pulses, the fractional laser bandwidth contributes strongly to
the spectral bandwidth, and nonlinear effects become impor-
tant, further degrading the brightness. Peak spectral on-axis
brightness as a function of the normalized Doppler-shifted
frequency, χ, and laser pulse duration, ∆t, are shown in
Fig. 4 (nonlinear effect ignored) and Fig. 5 (nonlinear effect
included). When nonlinear effects are neglected, a relatively

large range of laser pulse durations yield high-brightness op-
erations; the limits are set by the laser bandwidth for short
pulses, which broaden the x-ray spectrum by diffraction for
long pulses. Accounting for nonlinear effects, however, re-
veals a much tighter constraint on the drive laser pulse dura-
tion, as shown in Fig. 5, where the strength of the pondero-
motive force is also indicated: the optimum lies in the range
of 3–7 ps, and a duration of 5 ps would be a good working
point.

Fig. 5. (Color online) Peak spectral on-axis brightness as a func-
tion of the normalized Doppler-shifted frequency. χ, and laser pulse
duration, ∆t. (Nonlinear effect included)

The size of the laser beams also have an impact on the laser
normalized vector potential. The larger the laser beam size,
the smaller the laser normalized vector potential, accordingly
to reduce the nonlinear-induced spectral broadening. How-
ever, the larger the laser beam size, the smaller the laser pho-
tons density, and thus smaller photon flux and smaller the
spectral brightness. Meanwhile, the Rayleigh length should
be longer than the pulse duration. Small sizes will also in-
troduce a large divergence. Figure 6 shows the peak spectral
brightness as a function of the laser beam focal radius. We
chose a laser spot size of 15 µm as the working point.

Fig. 6. Peak spectral brightness as a function of the laser focal spot
size.
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Through theoretical analysis, the optimized parameters of
the electron beams and laser beams are finalized. To ver-
ify the predicted performance, numerical simulation is highly
desirable. In SINAP, a four-dimensional (three-dimensional
time and frequency-domain) Monte Carlo LCS simulation
code, MCLCSS [77], has been developed with the Geant4
toolkit [78]. The code has the capability to calculate the spa-
tial, spectral, and temporal characteristics of the LCS light
sources with slanting collision configuration. The code has
been benchmarked with the popular code, CAINS [79], and
with realistic measurements by PLEIADES at LLNL, HIγS
at Duke University and the UVSOR-II facility. As shown
in Fig. 7, the simulation results agree reasonably well with
theoretical predictions. A γ ray source with flux as high as
7× 107 photons/s can be achieved with the optimized param-
eters of the electron and laser beam at the SXFEL project.

Fig. 7. (Color online) The peak spectral brightness of the γ-ray
source at the SXFEL. (theory: blue line, MC simulation: red dots)

C. Comparison with ELI-NP and SLEGS

The SLEGS project [42, 80] is a LCS γ-ray source pro-
posed at the storage ring of the SSRF. The SLEGS will be
built at one of the long straight sections. There are two oper-
ational modes, intermediate energy mode with backscattering
geometry, and low energy mode with side-scattering geome-
try. In the low energy mode, the interaction angle of the elec-
tron beam with the CO2 incident laser can be changed con-
tinuously with a rotating platform, thus γ-ray photons with
an energy ranging from 0.4 to 20 MeV. The main parameters
of the low energy mode of operation of SLEGS are listed in
Table 2. Similarly, the optimized performance is shown in
Fig. 8.

The performance comparison of ELI-NP and SLEGS is
summarized in Table 3. Despite of the lower repetition rate,
single bunch operation mode with around 3 order of magni-
tude lower spectral density, the flux per shot and peak bright-
ness are comparable with ELI-NP, and are 2 orders of mag-
nitude and 11 orders of magnitude higher than that of the
SLEGS project, respectively.

TABLE 2. Main parameters of the SLEGS project.
Parameters Value Unit
e- beam energy, Ee 3.5 GeV
e- energy spread, σEe/Ee 0.944e-3
e- beam current, I 300 mA
e- bunch charge, Q 0.864 nC
Bunch number 500
e- emittance, εx/εy 2.59/2.59e-2 nm rad
e- beam size, σx/σy 276.9/12.24 µm
e- pulse length σz 3 mm
Laser wavelength, λ 10.64 µm
Laser Power, P 100 W
Laser spot size, σx/σy 50/50 µm

Fig. 8. (Color online) The peak spectral brightness of low energy
mode of SLEGS. (theory: blue line, MC simulation: red dots)

D. Potential scientific opportunities

As aforementioned, the proposed γ-ray source at the
SXFEL will be useful in diverse fields from nuclear struc-
ture physics [81–83] to nuclear isomers [84], nuclear astro-
physics [85], and nuclear data [86], to space radiation ef-
fects research of aerospace electronic components, and ac-
curate calibration of gamma detectors for aerospace. More-
over, by combining high brightness X-rays and γ-rays in a
single facility, a number of opportunities for fundamental
physics studies can be expected. For more than 30 years,
photon colliders [87] have been considered as a natural ad-
ditions to electron-positron collider projects in the high en-
ergy physics community. There has been renewed interest in
recent years [88, 89] to build a photon collider as a Higgs fac-
tory, since the discovery of the Higgs boson in 2012. A new
class of photon collider is proposed [90] , in which a gamma-
ray beam is fired into the high-temperature radiation field of
a laser-heated hohlraum. In the SXFEL case, it fits quite well
and provides more precise tools for the study of the Breit-
Wheeler pair production process, which is the most striking
prediction of quantum electrodynamics.

The possibility of creating a nuclear gamma-ray
laser (NGL) has been attracting attention for half a
century [91, 92]. However, as of now, convincing data about
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TABLE 3. Performance comparison
Parameters LCS@SXFEL ELI-NP [62] SLEGS Unit
Photon energy 3.7–38.9 0.2–19.5 1.47–21 MeV
Spectral density 4–39 0.8–4 × 104 0.008–0.015 ph/(s eV)
Bandwidth < 0.5% < 0.5% < 0.5%
Photons/shot within FWHM BW < 4.54 × 106 < 2.6 × 105 < 0.00043 photons/pulse
Photons/sec within FWHM BW < 4.54 × 107 < 8.3 × 108 < 1.5 × 105 photons/second
Source size (rms) 12 10–30 275/12 (x/y) µm
Source divergence (rms) 0.8 0.03-0.2 0.6-0.9 mrad
Peak brightness 4 × 1021–5 × 1022 1020–1023 1011–1014 s.u.
Pulse length (rms) 0.86 0.7–1.5 10.5 ps
Repetition rate 10 100 347 × 106 Hz

its experimental solution is still absent. The key conflict
inherent in the NGL concepts is the antagonism between the
necessity to accumulate a sufficient amount of excited nuclei
and the requirement to narrow down the emission line to its
natural radiative width. For the combined high brightness
narrow bandwidth X/γ sources at SXFEL, it’s possible to test
the X-ray pumped NGL concept [93].

IV. CONCLUSION

In this paper, the design of a narrow bandwidth, high
peak brightness LCS γ-ray source based on the SXFEL
linac, is presented. Its peak brightness will be larger
than 2× 1022 photons/(mm2 mrad2 s 0.1%BW) and photon
energy ranges from 3.7 MeV to 38.9 MeV, which will en-
able a broad range of nuclear physics studies and advanced
nuclear photonics applications. The photon flux will be at
least 2 orders of magnitude, and peak brightness will be 11
orders of magnitude higher than that of the SLEGS projects.
Its performance is also comparable with the most advanced γ-
ray source, ELI-NP. By combing the brightness γ-rays with
bright X-rays, a new type of photon collider for fundamental

QED physics studies can be envisioned and the exploration of
a new approach to γ-ray laser can be carried out.

It’s also worthy to point out that current design studies are
preliminary. There is still a lot of room for further improve-
ment. To name a few, reduction of the emittance of the elec-
tron beam, adoption of the multi-bunch operation and the in-
tegration of the laser cavity [94], and the usage of plasma
channels [95] may further increase the photon flux by or-
ders of magnitude. Spectral broadening effects can be com-
pensated by chirped electron beams [96], and/or suitable fre-
quency modulation of incident laser pulses [97–99]. During
the simultaneous operation of the X-ray FEL and the γ-ray
source, the X/γ-ray optics demanded by the aforementioned
experiments will be technically challenging. These concerns
will be the topics of our future studies.
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