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Abstract Identifying the geometric information of an

object by analyzing the detected radiation fields is an

important problem for national and global security. In the

present work, an inverse radiation transport model, based

on the enhanced differential evolution algorithm with

global and local neighborhoods (IRT-DEGL), is developed

to estimate the unknown layer thickness of the source/

shield system with the gamma-ray spectrum. The frame-

work is briefly introduced with the emphasis on handling

the enhanced differential evolution algorithm. Using the

simulated gamma-ray spectra, the numerical precision of

the IRT-DEGL model is evaluated for one-dimensional

source systems. Using the detected gamma-ray spectra, the

inverse investigations for the unknown thicknesses of

multiple shielding layers are performed. By comparing

with the traditional gamma-ray absorption method, it is

shown that the IRT-EDGL model can provide a much more

accurate result and has great potential to be applied for the

complicated systems.

Keywords Inverse radiation transport � c Spectrometry �
Multi-shielding layers � Differential evolution with local

and global neighborhoods

1 Introduction

Techniques acquiring the special and geometric infor-

mation for an object by analyzing the detected radiation

fields, which is usually classified as inverse radiation

problem, play an important role in the applications that

support nonproliferation, arms control verification and

international security. During the past decades, great

efforts have been dedicated to studying the roles of

gamma-ray transports in the medium and the interaction

between gamma rays and medium materials [1] and to

attempting to find the solution of the inverse transport

problems using either explicit method or implicit

method [2].

The gamma-ray absorption method is one of the most

common explicit methods used to identify the geometric

information of a source/shield system with detected radi-

ation information, for example, the thicknesses of shielding

layers are obtained explicitly by analyzing the several

gamma-ray intensities detected with and without shielding

materials as well as the shielding material absorption

properties. This method has been applied to identify the

shielding material thickness several decades ago and is also

one of the most popular methods nowadays for rough

estimation due to its convenience [3–6]. However, the

disadvantage for such explicit methods is also obvious,

e.g., the gamma-ray absorption method may be unsuit-

able for the complicated source systems with unsymmet-

rical geometry characteristics as well as the source systems

with multilayer shielding material where one often has to

deal with the ill-conditioned equations [7].

Another possible way to identify the unknown proper-

ties of radiation source terms and transport media is the

implicit method, which is called the inverse radiation
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transport method here, in which the nonlinear regression is

applied to the forward transport model, and the unknown

source/shield properties are treated as regression variables

and iteratively modified until the calculated spectrum

matches the measured spectrum [2, 8]. In comparison with

the explicit method, the inverse radiation transport method

is more generally tractable and more general in its appli-

cations, and therefore, numerous techniques including the

Levenberg–Marquardt method [7, 9], differential evolution

(DE) method [10, 11] and mesh adaptive direct search

(MADs) [12] method are applied to improve the inverse

transport models for a variety of applications.

Among these numerical techniques, the Levenberg–

Marquardt method as a standard gradient-based optimiza-

tion algorithm has been used to solve the inverse problems

with relatively few unknowns, approximately smaller than

4, and achieved high success with proper initial guess [8].

References [9, 10, 13] coupled the forward and adjoint

radiation transport solutions to evaluate the inverse method

and identify the locations of interfaces between material

layers, source composition, shield material identification

and material mass density, as well as the combinations of

these unknown properties in spherical and cylindrical

radiation source/shield system, and moreover, several

numerical investigations using simulated experimental

gamma-ray spectra were performed to examine the validity

and precision for the inverse solver. Reference [7] adopted

the numerical difference techniques instead of the adjoint

solution to develop an inverse solver and applied the solver

to estimate the thickness of one-dimensional plutonium

metal as well as the shielding iron shell with analysis of full

detected gamma-ray spectra. Later, Mattingly extended the

inverse solver to simultaneously analyze gamma spec-

trometry and neutron multiplicity measurements [14] for

the unknown layer thicknesses of one-dimensional source

systems, and the experimental validation for the inverse

solver is discussed [15].

Later, the differential evolution (DE) method, the mesh

adaptive direct search (MADS) method and the covariance

matrix adaptation evolution strategy (CMA-ES), powerful

evolution optimization algorithms, have been applied to

solve inverse problems for spherical geometries with

uncollided leakages of discrete gamma-ray lines and for

cylindrical geometries with uncollided scalar fluxes with

gamma-ray lines at points outside the system [10, 12, 16],

where the experimental gamma-ray spectra are obtained by

simulation. It is found that numerically the inverse solver,

based on the evolution optimization algorithm, can be

applied for the system with unknowns more than 4 with

random initial guess and achieves much higher success rate

for the same inverse problem in comparison with gradient-

based method, indicating that the evolution optimization

algorithm is more proper for the inverse radiation transport

problems [12, 17]. Besides, it is also suggested that more

algorithm improvement, as well as experimental validation

and testing for such inverse solvers, is still needed.

Recently, an enhanced differential evolution algorithm

with global and local neighborhoods (DEGL) has been

proposed and is suggested to perform better than the

standard differential evolution algorithm [18, 19]. There-

fore, in the present paper, an inverse radiation transport

model is developed based on DEGL (IRT-DEGL), and the

numerical evaluation of the present inverse model is per-

formed using both simulated and detected gamma-ray

spectra.

2 Differential evolution enhanced with global
and local neighborhoods

The differential evolution algorithm enhanced with

global and local neighborhoods (DEGL) has introduced the

neighborhood-based DE mutation, which is equipped with

a self-adaptive weight factor, and attempts to make a bal-

anced use of the exploration and exploitation abilities of

the search mechanism. Therefore, it is thought to be more

likely to avoid false or premature convergence and sug-

gested to be attractive for optimizing a wide variety of

objective functions [18, 19].

The implementation process for the inverse radiation

transport model based on the DEGL algorithm is similar to

that based on the standard DE method shown in Ref. [11].

In comparison with the implementation process reported in

Ref. [11], the present inverse model uses the following

mutation operation to create trial vectors viði ¼ 1; . . .;PÞ,
denoted as:

v
ðhÞ
i ¼ x � gðhÞi þ ð1� xÞ � lðhÞi

ð1Þ

with the global neighborhood mutation g
ðhÞ
i and local

neighborhood mutation l
ðhÞ
i

ghi ¼ u
hð Þ
i þ a � u

hð Þ
best;i � u

hð Þ
i

� �
þ b � u hð Þ

a � u
hð Þ
b

� �
;

lhi ¼ u
hð Þ
i þ a � u

hð Þ
pbest;i � u

hð Þ
i

� �
þ b � u hð Þ

c � u
hð Þ
d

� �
;

ð2Þ

where the total population size, P, which is usually 3 times

larger than the unknown number, is set to 9 in the present

paper, the evolution generation is represented as h, and the

largest generation number, hmax, equals 100. u
ðhÞ
best;i indi-

cates the best vector in the entire population at generation h

and random integral numbers a; b 2 ½1;P� with a 6¼ b 6¼ i

as the scaling factors. u
ðhÞ
pbest;i indicates the best vector in the

neighborhood of u
ðhÞ
i with random integral numbers c; d 2

½i� k; iþ k� with p 6¼ q 6¼ i, where the neighborhood of

radius, k, is a nonzero integer from 0 to ðP� 1Þ=2 and is
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fixed to be ðP� 1Þ=2 here. Scaling factors a and b are used

to consider both arithmetical recombination operation and

differential mutation and are set to be 0.7 in the present

paper.

The weight factor, x, controlling the balance between

the exploration and exploitation capability is defined as

x ¼ exp
h

hmax

� ln 2
� �

� 1:0; ð3Þ

which means the exploration is favored in the first stage of

the algorithm’s execution with x ¼ 0 corresponding to the

local neighborhood search, and the exploitation is pro-

moted at the final stages with x ¼ 1 corresponding to the

global neighborhood search.

The cost function that represented the difference

between the measured and calculated spectra is denoted as

f ðuÞ ¼
X
g

Rg � RgðuÞ
Rg

����
����; ð4Þ

where Rg is the measured data, and RgðuÞ is the calculated
value using postulated parameter set, u. The sum over

g can run over the full gamma-ray spectrum or the strong

gamma emission lines large enough to include gamma-ray

spectrum characteristics as much as possible.

3 Results and discussion

3.1 Simulation investigation

In order to evaluate the numerical precision of the pre-

sent IRT-DEGL model, two testing spherical multilayered

source/shield systems are considered first. The first source

system adopted is a multilayer shield high-enriched ura-

nium (HEU) sphere, where a HEU source (94.73% 235U

and 5.27% 238U) of density 18.74 g/cm3 with radius

8.471 cm is at the center and surrounded by a void between

8.471 and 12.40 cm, a shielding layer of aluminum is

between 12.40 and 12.90 cm, and a shielding layer of iron

is between 12.90 and 13.20 cm. The second source system

is a multilayer shield HEU shell with the same material

compositions as the first testing model, and the geometric

information can be found in Table 1. The material in each

layer is homogeneous. Generally, in a real detection, one

can get the accurate outer radius of a source system with

various measurement techniques, while the thickness of the

shielding layers is not easy to be obtained without opening

the source system. Therefore, in the present investigation,

we assume that the outer radius of the source system is

already known, and the inverse calculations for the

unknown thickness for shielding layers as well as the

source radius are carried out. The modeled HPGe detector

is 20 cm from the center of the source system, and for the

simulated experimental data with Monte Carlo code

MCNP5 [20], the full gamma-ray spectrum is used for the

inverse calculation.

It is known that one of the advantages for the inverse

transport model based on the differential evolution method

is that its calculation results do not depend on the initial

guesses. Therefore, one can, in principle, create the initial

values for the unknown radii under the constraint given by

prior information of the source system, that is, one can

create a value between 0.00 and 13.20 cm for the HEU

source in both testing models. However, since the different

attenuation of the photopeaks and the shape of the

Compton continuum associated with the photopeak are

dependent on the shielding materials, it is possible to

obtain the estimated values for the unknown layer thick-

nesses from the empirical formula and prior information,

which can help to reduce the computing time greatly. In the

inverse calculations for the testing source/shield systems,

the initial radii are listed in Table 1, where the largest

relative difference between the initial and actual values

range reaches 400.0%.

After the respective 68 and 53 generation evolution, the

IRT-DEGL calculations for testing source system I and II

converge with the cost function of optimal vector

f ðuopt:Þ\0:005. The statistical errors of the full-energy

peak areas for the four strongest energy lines of HEU are

smaller than 1% in the Monte Carlo simulations. The cal-

culated thicknesses of the HEU source, aluminum and iron

shielding layers are the same with the real values up to

0.001 cm, numerically indicating that present inverse

model can be applied to investigate the unknown properties

of the source/shield system with high precision. Further-

more, it is worth pointing out that during the inverse cal-

culations the relative differences between the calculated

Table 1 Thickness of the HEU source and shielding materials for the

testing source/shield systems in units of cm

HEU Void Aluminum Iron

Testing source/shield system I

Initial 8.200 3.800 0.600 0.600

IRT-DEGL 8.471 3.929 0.500 0.300

Actual 8.471 3.929 0.500 0.300

Void HEU Aluminum Iron

Testing source/shield system II

Initial 10.000 1.000 1.000 1.200

IRT-DEGL 10.471 0.929 1.500 0.300

Actual 10.471 0.929 1.500 0.300
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and actual thicknesses are smaller than 0.1% after a

10-generation evolution for both testing models, and

therefore, it is necessary to set up the proper stopping

criteria or to stop iteration manually according to the actual

precision requirement.

3.2 Experimental investigation

In order to evaluate the present IRT-DEGL model and

study the influence of using the detected gamma-ray

spectra for the shielding layer thickness estimation, a series

of experiments for the source/shield systems are conducted

with a 60% relative efficiency HPGe spectrometer.

It is known that the precise full-energy peak efficiency

calibration of HPGe detectors for the wide energy range

is important in gamma-ray spectrometry, especially for

the quantitative investigations of the source systems with

unknowns. As we know, the thickness of the dead layer of

HPGe detector crystals may vary considerably with the

time, and the detection efficiency estimated by Monte

Carlo simulation with the manufacture’s value usually

has a significant discrepancy from the experimental

measurement [21, 22]. One of the possible methods to

overcome this difficulty is to vary the thickness of the

dead layer in the simulation until a good agreement

between the simulation and experiment is reached with a

suitable thickness. Thus, before the inverse investiga-

tions, the full-energy peak efficiency calibration for the

HPGe detector we used is performed with a point source
152Eu.

In Fig. 1, the relative efficiencies, the efficiency related

to the strongest 122 keV energy line, simulated with the

manufacture’s dead layer thickness, 0.7 mm, and optimized

value, 0.8 mm, for the energy lines ranging from 0.1 to 1.4

MeV in comparison with the experimental data are shown

in the panel (a), and the relative differences between the

simulated and experimental values are plotted in panel (b).

The statistical errors of the full-energy peak areas for these

energy lines are smaller than 1% in both experimental data

and simulated values. One can see that both simulated and

experimental values decrease with increasing energy. The

simulation results obtained with the manufacture’s dead

layer thickness of 0.7 mm are systematically higher than

the experimental data with the relative differences almost

larger than 3%, indicating that the manufacture’s value is

smaller than the real thickness. Therefore, we increase the

thickness by every 0.05 mm and find that when the thick-

ness of dead layer equals 0.8 mm, the simulated results

achieve good agreement with the detected data. The rela-

tive difference is smaller than 3% for most energy lines,

which is reduced by half in comparison with the values

obtained with 0.7 mm. Therefore, the dead layer thickness

of 0.8 mm is fixed in the present paper.

Actually, it should be pointed out that there are also

some other reasons for the introduction of the error into the

simulation of full peak detection efficiencies, e.g., the

distance between the radiation source and the surface of

detector, the gap between the HPGe detector crystal and Al

shell, and the position of HPGe detector crystal. The

optimization for the dead layer thickness of crystal is not

only to correct the detector geometry, that is, the optimized

thickness of dead layer is not absolute to the actual thick-

ness than the manufacture’s value, but also to provide an

effective compensation for the thickness of the dead layer

as well as other effects which can influence the detection

efficiency but are not included in the simulation calcula-

tions. If a more accurate simulation result is required, a

more precise optimization for dead layer thickness as well

as the further optimization of crystal parameters, e.g., size

and cold finger, can be performed.

To establish the present IRT-DEGL model experimen-

tally, a simple example is adopted for the first attempt,

where a shielding layer of copper with a thickness of 0.308

cm is located between the point source 152Eu and the HPGe

detector. The detection situation is the same as the one for

(a)

(b)

Fig. 1 (Color online) Relative efficiency obtained with the dead layer

thickness 0.7 mm given by manufacture and 0.8 mm optimized in

comparison with the experimental data in panel (a), as well as the

corresponding relative differences between the simulated and

detected values in panel (b)
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detector efficiency calibration except for the copper

shielding layer. The thickness of the copper layer is

assumed to be unknown. The density of the copper layer

equals 8.96 g/cm3, and the material in the layer is homo-

geneous. The distances between the source and the HPGe

detector, and between one surface of copper layer and the

detector are already known. The measurements of the full-

energy peak area for the strong emission lines adopted in

HPGe detector efficiency calibration are used. The statis-

tical errors for both experimental and simulated full-energy

peak areas for these emission lines are smaller than 1%.

In Fig. 2, the cost function of the optimal parameter set

f ðuopt:Þ as well as the optimal thickness of copper layer

estimated in each generation are shown. The 0 generation

denotes the results obtained with the initial thickness set to

be 1.5 cm which is about 5 times larger than the real val-

ues. It can be seen that the cost function of the optimal

parameter set decreases with the increasing generation

monotonically, especially for the 0 to 1 generation; the

value of the cost function is reduced from 29.3 to 2.19%

and becomes smaller than 1.0% for only 4 generations of

evolution, indicating that the present inverse radiation

transport model can search the area around the actual value

rapidly. If one just needs the rough thickness value, then

the iteration calculation can be stopped manually, and a

thickness of 2.86 cm is obtained. Here, since the aim is to

test the numerical precision with the experimental gamma-

ray spectrum, the iteration calculation is set to continue

until the cost function f ðuopt:Þ is smaller than 0.5% and

does not decrease for 5 generations. After 11 generations,

the inverse calculation stops with the cost function

f ðuopt:Þ ¼ 0:02%, and the optimal thickness of copper layer

equals 0.313 cm with the relative difference 1.62% from

actual value.

Of course, one can also use the traditional gamma-ray

absorption method to estimate the unknown layer thickness

by analyzing the relative intensity for several gamma rays

detected with and without the shielding layer exactly, i.e.,

r ¼ lnA0 � lnA

lðEiÞ � lðEjÞ
ð5Þ

with

A0 ¼
I0ðEiÞ
I0ðEjÞ

; A ¼ IðEiÞ
IðEjÞ

; ð6Þ

where r denotes the thickness of the copper layer, I0ðEiÞ
and IðEiÞ denote the intensity of the Ei line detected

without and with the copper layer, respectively, and lðEiÞ
denotes the absorption coefficient of copper for the Ei line.

In the present paper, the difference dl ¼ lðEiÞ � lðEjÞ
� �

is calculated for the strongest 122 and 244 keV lines in the

Monte Carlo simulation and is shown in Table 2, where

several thicknesses of copper layer are considered. It is

shown that the simulated results with different assumed

thicknesses are consistent with each other and the values

are around 1.5 cm�1.

Using the simulated absorption coefficient differences,

dl, the thickness of the copper layer is solved with Eq. 5

and is shown in Table 3 in comparison with the IRT-DEGL

result. The results from the gamma-ray absorption method

are the same with each other up to 0.01 cm with the relative

differences from the actual value around 5%, which is

about 2 times larger than the inverse calculation result.

This is because in the gamma-ray absorption method only

(a)

(b)

Fig. 2 (Color online) The cost function of optimal parameter set

f ðuopt:Þ, a as well as the corresponding optimal thickness of copper

layer estimated in each generation, b is shown as a function of

generation number. The dotted line denotes the zero value in panel

(a) and actual thickness of copper layer in panel (b)

Table 2 Differences between the absorption coefficients dl ¼
lðEiÞ � lðEjÞ
� �

for the 122 and 244 keV lines obtained by the Monte

Carlo simulation with different copper layer thicknesses

Monte Carlo simulation results

0.200 (cm) 0.300 (cm) 0.500 (cm)

dl (cm�1) 1.506 1.489 1.463
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two energy lines are used to estimate the layer thickness,

while in the inverse radiation transport model the consid-

eration of 11 full-energy peaks allowed us to analyze

enough characteristics of the gamma-ray spectrum and

obtain the more accurate results. Furthermore, in the

gamma-ray absorption method the additional treatment of

the absorption coefficient and the detected spectrum with-

out shielding layer may also introduce more numerical

errors.

For further establishing the present IRT-DEGL model,

we added one more layer of aluminum with a thickness of

0.570 cm into the previous detection system already

including one copper layer and detected the gamma-ray

spectrum for the inverse study. Considering the cases in

which the shielding layers are encapsulated as a whole, it is

not easy to distinguish the layer thicknesses easily. The

thicknesses of the copper layer and aluminum layer are

both assumed to be unknown. The densities of the copper

layer and aluminum layer are 8.96 and 2.7 g/cm3, respec-

tively, and the material in the layer is homogeneous. Two

layers are close to each other, and the copper layer is on the

side closest to the HPGe detector. The distance between the

radiation source and HPGe detector and the distance

between the HPGe detector and one surface of the copper

layer are already known. Also, the statistical errors for both

experimental and simulated full-energy peak areas for

these emission lines are smaller than 1%.

The IRT-DEGL calculation is performed using the ini-

tial guesses of 0.5 cm for the copper layer and 0.7 cm for

the aluminum layer with the detected full-energy peak

areas of the 7 strongest emission lines of 152Eu (122, 344,

779, 964, 1086, 1112 and 1408 keV). The optimal thick-

nesses for the copper layer and aluminum layer in each

generation are plotted in Fig. 3, and the actual values are

represented as dotted lines. The 0 generation denotes the

initial thicknesses. It can be also seen that the after 1

generation the estimated thicknesses for the copper layer

are located in the area around the actual values, indicating

the present IRT-DEGL model can search the correct value

area rapidly. After 19 generations of evolution, inverse

calculation stops because the cost function, f ðuopt:Þ, does
not change for 5 generations. The final optimal thicknesses

of the copper layer and aluminum layer are 0.319 and 0.531

cm corresponding to the relative differences from the

actual value 3.57 and 6.84%, respectively. The major rea-

sons for the deviation may include the statistical error and

extracting error for the experimental full-energy peak area,

theoretical simulation of the HPGe detector and detection

process, and lack of enough spectrum characteristics to be

analyzed in inverse calculation.

Again, the gamma-ray absorption method is used to

calculate the unknown layer thicknesses for comparison.

Analyzing the intensity of the gamma ray transporting with

and without shielding layer, one can construct the follow-

ing equation,

�lr1ðEiÞ þ lr1ðEjÞ � lr2ðEiÞ þ lr2ðEjÞ
�lr1ðEkÞ þ lr1ðElÞ � lr2ðEkÞ þ lr2ðElÞ

� �
r1

r2

� �

¼
lnðA=A0Þ
lnðB=B0Þ

� �

ð7Þ

with

A0 ¼ I0ðEiÞ=I0ðEjÞ A ¼ IðEiÞ=IðEjÞ;
B0 ¼ I0ðEkÞ=I0ðElÞ B ¼ IðEkÞ=IðElÞ;

ð8Þ

Table 3 Comparison between the results from the gamma-ray

absorption method using the values of dl shown in Table 2 and the

IRT-DEGL model

r (cm) Absorption method IRT-DEGL model

0.286 0.289 0.294 0.313

jdr=rj 7.14% 6.17% 4.55% 1.62%

Fig. 3 (Color online) Optimal thicknesses for copper layer (a),
aluminum layer (b) estimated by the IRT-DEGL model as a function

of generation. The dotted line denotes actual thicknesses of copper

and aluminum layers
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where r1 and r2 denote the thicknesses of the shielding

layers, I0ðEiÞ and IðEiÞ denote the intensity of the Ei line

detected without and with shielding layers, respectively,

and lr1ðEiÞ and lr2ðEiÞ denote the absorption coefficient of

the first and second shielding layers for the Ei line. For

solving the unknown thicknesses of the shielding layers,

four energy lines, i.e., 122, 244, 344 and 778 keV, are

adopted. The intensity I and I0 for these energy lines are

obtained from the detected gamma-ray spectrum, while the

absorption coefficients for the copper and aluminum are

obtained by the Monte Carlo simulation and are shown in

Table 4.

Using the experimental intensities and simulated

absorption coefficients, the thicknesses of copper and alu-

minum layers are solved by searching the nonnegative

solution for Eq. 7 and are shown in Table 5. An even larger

deviation appears for both the copper layer and aluminum

layer thicknesses in the gamma-ray absorption results in

comparison with the inverse results. Except for the same

reason as the IRT-DEGL model, there are also several

factors affecting the calculation precision for the gamma-

ray absorption method. As the case of one shielding layer,

only four energy lines used in the gamma-ray absorption

method are not enough for the accurate estimation of the

layer thicknesses, and the additional treatment of the

absorption coefficient and the detected spectrum without

shielding layer may also introduce more numerical errors.

Furthermore, for the case of two shielding layers, instead of

the simple analytic expression for the one-layer case, one

has to deal with the nonnegative solution of matrix equa-

tion, which would possibly introduce a larger numerical

error, especially for the ill-condition case. For the multi-

layer case, one has to deal with multi-dimension matrix

equations, which will necessarily bring in a notable nu-

merical error.

In contrast, the IRT-DEGL model solves the unknown

layer thicknesses by iteratively adjusting the hypothetical

transport model to match the measured spectrum, which

indicates that the numerical solution for the matrix equa-

tion is avoided and does not introduce the additional

parameters, e.g., absorption coefficients in the gamma-ray

absorption method, which can also help to avoid bringing

in unnecessary numerical errors. Besides, the IRT-DEGL

model is more general in its applications, for instance,

solving for one-dimension or multi-dimension shielding

layers is basically the same except for more shielding

layers added into the photon transport model in simulation,

and can be easily applied to study the source system with

more unknown properties in the same framework, for

example, both density and thickness of the shielding layer

are unknown.

4 Summary and conclusion

In summary, an inverse radiation transport model based

on an enhanced differential evolution algorithm with global

and local neighborhoods (IRT-DEGL) is developed for

identifying the unknown shielding layer thickness. The

framework is briefly introduced with the key formalism on

handling the enhanced differential evolution algorithm.

The IRT-DEGL code is verified by using both the simu-

lated and detected gamma-ray spectra. Using the simulated

gamma-ray spectra, the numerical precision of the IRT-

DEGL code is evaluated for two multilayered source/shield

systems, where the calculated thicknesses of the multi-

shielding layers are the same with the real values up to

0.001 cm. Using the detected gamma-ray spectra after

optimization of the dead layer thickness for the HPGe

detector crystal by detection efficiency calibration, the

unknown thicknesses for the one shielding layer and two

shielding layers are investigated in the IRT-DEGL method.

It is found that in comparison with traditional gamma-ray

absorption method, the IRT-DEGL method can consider

more gamma-ray spectrum characteristics and avoid the

additional treatments that may introduce numerical errors,

e.g., the absorption coefficient and ill-conditioned equa-

tions, and therefore, a much more accurate result can be

provided. Furthermore, because of the tractability and

generality of the IRT-DEGL method for applications, the

IRT-DEGL model may have great potential to be applied

for the complicated systems.
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Table 4 Absorption coefficients of Cu and Al obtained with the

Monte Carlo simulation

E (keV) 122 244 344 778

lCu (cm�1) 2.523 1.034 0.856 0.569

lAl (cm
�1) 0.395 0.363 0.242 0.163

Table 5 Comparison between the results from the gamma-ray

absorption method and the inverse transport method

Absorption method IRT-DEGL model

Cu Al Cu Al

r (cm) 0.373 0.200 0.316 0.534

jdr=rj 21.10% 61.31% 2.60% 6.32%
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