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Abstract Nuclear single-proton resonances are sensitive to

the Coulomb field, while the exchange term of Coulomb

field is usually neglected due to its nonlocality. By com-

bining the complex scaling method with the relativistic

mean-field model, the influence of the Coulomb exchange

term on the single-proton resonances is investigated by

taking Sn isotopes and N¼ 82 isotones as examples. It is

found that the Coulomb exchange term reduces the single-

proton resonance energy within the range of 0.4–0.6 MeV

and leads to similar isotopic and isotonic trends of the

resonance energy as those without the Coulomb exchange

term. Moreover, the single-proton resonance width is also

reduced by the Coulomb exchange term, whose influence

generally decreases with the increasing neutron number

and increases with the increasing proton number. However,

the influence of the Coulomb exchange term cannot change

the trend of the resonance width with respect to the neutron

number and proton number. Furthermore, the influence of

the Coulomb exchange term on the resonance width is

investigated for the doubly magic nuclei 40Ca, 56;78Ni,
100;132Sn, and 208Pb. It is found that the Coulomb exchange

term reduces the proton resonance width within 0.2 MeV,

whose magnitude depends on the specific nucleus and the

quantum numbers of resonant states.

Keywords Single-proton resonance � Complex scaling

method � Coulomb energy

1 Introduction

With the development of the radioactive ion beam

facilities in recent years, exotic nuclei far from the b-sta-
bility line have become an active field of research [1–3].

Resonance is an interesting phenomenon in nuclear phy-

sics. It plays important roles in understanding many exotic

nuclear phenomena, such as the halo [4–7], giant halo

[8, 9], deformed halo [10, 11], and collective giant reso-

nance [12, 13]. Therefore, investigation of single-particle

resonances has become a hot topic in nuclear physics.

So far, there have been many approaches to study

nuclear resonances. They mainly fall into two categories:

scattering theory and bound-state-like method. The scat-

tering theory includes the R-matrix theory [14, 15], K-

matrix theory [16], S-matrix method [13, 17], and Jost

function approach [18, 19], which have been successfully

employed to determine the resonance parameters (energy

and width). Recently, the Green’s function method [20–22]

has also been demonstrated to be an efficient tool for

describing the nuclear single-particle resonant states [23].

On the other hand, several bound-state-like methods have

also been developed due to their simplicities in computa-

tion, including the real stabilization method (RSM) [24–27]

and the analytic continuation in the coupling constant

(ACCC) method [28–34], and the complex scaling method

(CSM) [35–38].

By solving a complex eigenvalue problem, the CSM

treats the bound states and resonant states on the same

footing. It has been widely used to study resonances not
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only in atomic nuclei [39–43], but also in the atoms and

molecules [35, 44]. Recently, the relativistic mean-field

(RMF) theory has attracted wide attention due to its suc-

cessful applications in describing many nuclear structure

phenomena [45–48] and simulating abundances of stellar

nucleosynthesis [48–52]. The combination of the complex

scaling method with the RMF theory (RMF-CSM) was first

developed in Ref. [53] and was used to determine the

energies and widths of neutron resonant states in 120Sn,

which agree well with the results from the S-matrix

method, the ACCC method, and the RSM within the

framework of the RMF theory (denoted by RMF-S, RMF-

ACCC, and RMF-RSM, respectively). Furthermore, the

RMF-CSM was employed to investigate the single-neutron

resonant states of Zr isotopes and the pseudospin symmetry

in the resonant states [54].

Unlike the neutron resonant states, the calculations of

proton resonant states should take into account the Cou-

lomb field among protons. In the mean-field approxima-

tion, there exist the direct (Hartree) and exchange (Fock)

terms for the Coulomb field. However, the Coulomb

exchange term is usually neglected, since it is very com-

plicated and time consuming due to the nonlocality in the

Fock mean field. Recent studies found that the Coulomb

exchange term plays an important role in some nuclear

phenomena, such as Cabibbo–Kobayash–Maskawa matrix

[55] and mass differences of mirror nuclei [56]. Some

approximation techniques have been developed to effec-

tively take into account the Coulomb exchange term in the

Hartree approximation. The local density approximation

(LDA) is usually employed to estimate the Coulomb

exchange energies in the nonrelativistic framework

[57–60]. In Ref. [61], the relativistic local density

approximation (RLDA) for the Coulomb exchange term

was developed, and it was found that the relativistic cor-

rections are important to reproduce the exact Coulomb

exchange energies. Furthermore, guided by the RLDA, a

phenomenological formula for the coupling strength of the

Coulomb field was proposed in Ref. [56]. The accuracy of

this method is even better than the RLDA, and the relative

deviations of the Coulomb exchange energy in the calcu-

lations with phenomenological formula are less than 1%

for Ca, Ni, Sn, and Pb isotopes [56].

The proton resonant states of 120Sn have been studied

with the RMF-ACCC method [62], while the Coulomb

exchange term is neglected in the calculations. With the

RMF-CSM, the Coulomb exchange term has been taken

into account using the phenomenological coupling strength

of the Coulomb field [63]. However the influence of the

Coulomb exchange term on resonances has not been

studied for an isotopic or isotonic chain. Moreover, its

influence on the resonance width is not studied as well.

Therefore, in this work, we will apply the RMF-CSM to

calculate the resonance parameters of Sn isotopes and

N¼ 82 isotones. The phenomenological formula will be

used to evaluate the influence of the Coulomb exchange

term on the resonance parameters. Furthermore, the influ-

ence of the Coulomb exchange term on single-proton res-

onance widths will be investigated for the doubly magic

nuclei 40Ca, 56;78Ni, 100;132Sn, and 208Pb.

2 Numerical details

The basic ansatz of the RMF theory is a Lagrangian

density where nucleons are described as Dirac particles that

interact via the exchange of mesons (the scalar, r, the

vector, x, and isovector vector, q) and the photon. From

the Lagrangian density, the Dirac equation of the nucleon

can be obtained using the classical variation principle. For

spherical nuclei, meson fields and densities depend only on

the radial coordinate r and the Dirac equation is simplified

to the radial Dirac equation, which is

V þ SþM � d

dr
� 1

r
þ j

r
d

dr
þ 1

r
þ j

r
V � S�M

0
B@

1
CA f

g

� �
¼ e

f

g

� �
; ð1Þ

where V and S are the vector and scalar potentials, andM is

the nucleon mass. In this work, those parameters of

effective interaction in V and S are taken from the NL3

parameter set [64]. To investigate the influence of the

Coulomb exchange term, the effective charge factor in Ref.

[56],

gðZ;AÞ ¼ 1� aZb þ cAd; ð2Þ

is employed with a¼ 0:366958, b¼ � 0:645775, c¼
0:030379, and d¼ � 0:398341, which is the factor used to

multiply the coupling strength of the Coulomb field.

In the CSM, the Hamiltonian, H, and wave function, w,
are transformed by an unbounded nonunitary scaling

operator, UðhÞ, with a real parameter, h, i.e.,

H ! Hh ¼ UðhÞHUðhÞ�1; w ! wh ¼ UðhÞw: ð3Þ

The Dirac equation is then transformed to the complex-

scaled Dirac equation,

Hhwh ¼ ewh: ð4Þ

The complex-scaled Dirac Eq. (4) is solved by expansion in

the harmonic oscillator basis as in Ref. [53]. The eigen-

values of Hh representing continuous spectrum rotate with

h, while eigenvalues representing bound states or resonant

states do not change with h as long as h is large enough to

expose them from the continuous spectrum. The latter are
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associated with resonance complex energies

Er � iEi ¼Er � iC=2, where Er is resonance energy and C
is the width. For simplicity, the resonance energy and

width calculated including the Coulomb exchange term are

denoted by E�
r and C�, respectively.

In the actual calculation, there is no resonance energy

that is completely independent of h due to the numerical

approximation. The best estimate for the resonance energy

is given by the value of h for which the rate of change with

respect to h is minimal, i.e, the densest place in the h
trajectory. Figure 1 shows the h trajectory of single-proton

resonant state 1h9=2 for 120Sn calculated using the RMF-

CSM. The densest place corresponds to h¼ 6:0� and its

energy and width are 7.135 and 0.0037 MeV, respectively.

The result agrees with the results of the RMF-ACCC and

RMF-rS methods (r stands for relativistic and S stands for

scattering), whose resonance parameters (energy and

width) are (7.13, 0.017 MeV) and (7.132, 0.003 MeV),

respectively [62]. This indicates the reliability of the CSM

to calculate the parameters of single-proton resonant states.

3 Results and discussions

To understand the influence of the phenomenal Cou-

lomb exchange term on the resonance parameters, the total

proton potential, RðrÞ, and the Coulomb potential, VcoulðrÞ,
are shown in Fig. 2 for the cases without and with this

phenomenal Coulomb exchange term. From this figure, it is

clear that both potentials RðrÞ and VcoulðrÞ are reduced

when the phenomenal Coulomb exchange term is included,

which just reflects the attractive character of the realistic

Coulomb exchange term. This will induce the reduction of

the resonance parameters including the energy and width of

single-proton resonant state. In the following, we will

investigate the influence of the phenomenal Coulomb

exchange term on the energies and widths of single-proton

resonant states, taking the Sn isotopes and N ¼ 82 isotones

as examples.

With the RMF-CSM, the energies and widths of single-

proton resonant states of Sn isotopes are calculated by

phenomenologically including the Coulomb exchange term

with Eq. (2). The corresponding results are shown in Fig. 3.

Clearly, the energies and widths decrease with increasing

neutron number. Moreover, the energy decreases more

Fig. 1 (Color online) The h trajectory of single-proton resonant state

1h9=2 for 120Sn calculated with the RMF-CSM

Fig. 2 (Color online) The influence of the phenomenal Coulomb

exchange term on the total proton potential, RðrÞ, and the Coulomb

potential, VcoulðrÞ. The solid and dashed lines denote the potentials

without and with the phenomenal Coulomb exchange term,

respectively

Fig. 3 (Color online) Energies, E�
r , and widths, C�, of single-proton

resonant states for Sn isotopes calculated by the RMF-CSM with the

phenomenal Coulomb exchange term
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rapidly for the state with larger orbital angular momentum,

l, and hence leads to the crossing phenomenon appearing in

the resonance levels. For the spin doublets ð2f7=2; 2f5=2Þ and
ð3p3=2; 3p1=2Þ, variation of energy with neutron number is

similar due to the same centrifugal potential, while their

energy differences are attributed to the spin-orbit potential.

This isotopic trend for the resonance energy and width is

similar to those without the Coulomb exchange term [63].

For better understanding the influence of the Coulomb

exchange term on the resonance parameters, the differences

of resonance energies and widths calculated with and

without the Coulomb exchange term are shown in Fig. 4 for

Sn isotopes. It is found that the single-proton resonance

energies and widths of Sn isotopes are reduced when the

Coulomb exchange term is phenomenologically taken into

account. The difference of the resonance energy caused by

the Coulomb exchange term only slightly increases with

the increasing neutron number, which is within the range of

0.4–0.6 MeV, although the resonance energy spans from

4.643 (2f7=2 in 124Sn) to 9.187 MeV (2f5=2 in 114Sn).

Therefore, the isotopic trend of the resonance energy

remains unchanged whether the Coulomb exchange term is

taken into account. The difference of the resonance width

generally decreases with the increasing neutron number,

while its magnitude is relatively small and cannot change

the isotopic trend of the resonance width.

To study the influence of the Coulomb exchange term on

dependence of resonance parameters on the charge number,

the resonance parameters of N ¼ 82 isotones are calculated

by including the Coulomb exchange term phenomenolog-

ically. The corresponding results are shown in Fig. 5. The

Coulomb repulsive force plays an important role in deter-

mining the resonance parameters and it is determined by

the proton number in nucleus. Therefore, the resonance

energy increases with the increasing proton number for

N ¼ 82 isotones and its change is in nearly the same

magnitude for various resonant states with different l. For

the width of resonant state, it also increases with the

increasing proton number, while its change is remarkable

for broad resonant states, such as 3p1=2 and 3p3=2. As the

case in Sn isotopes, the change trend of the resonance

energy and width for N ¼ 82 isotones is also similar to that

without the Coulomb exchange term [63].

In Fig. 6, the differences of single-proton resonance

energies and widths calculated with and without the Cou-

lomb exchange term are shown for N¼ 82 isotones. It is

found that the resonance energies and widths of N¼ 82

isotones are reduced when the Coulomb exchange term is

taken into account phenomenologically. In general, the

difference of the resonance energy caused by the Coulomb

exchange term slightly increases with the increasing proton

number, and it is still within the range of 0.4–0.6 MeV as

Fig. 4 (Color online) The differences of single-proton resonance

energies (Er � E�
r ) and widths (C� C�) for Sn isotopes by phenom-

enally including the Coulomb exchange term

Fig. 5 (Color online) Energies E�
r and widths C� of single-proton

resonant states for N¼ 82 isotones calculated by the RMF-CSM with

the phenomenal Coulomb exchange term

122 Page 4 of 7 S.-Y. Wang et al.

123



the case in Sn isotopes. Therefore, the isotonic trend of the

resonance energy remains unchanged. The difference of the

resonance width increases with the increasing proton

number, and the change in width even reaches about

0.07 MeV for the broad resonant states 3p1=2 and 3p3=2 of
136Xe. However, its magnitude is still not large enough to

change the trend of the resonance width for N¼ 82

isotones.

Through the above research, it is found that the Cou-

lomb exchange term plays an important role not only in the

resonance energy, but also in resonance width. In Ref. [63],

the influence of the Coulomb exchange term on single-

proton resonance energy has been studied in different

nuclear regions, taking the doubly magic nuclei 40Ca,
56;78Ni, 100;132Sn, and 208Pb as examples. So it is interesting

to further investigate the influence of the Coulomb

exchange term on the single-proton resonance width. In

Fig. 7, the differences of single-proton resonance widths

for doubly magic nuclei 40Ca, 56;78Ni, 100;132Sn, and 208Pb

are shown. It is clear that the Coulomb exchange term

reduces the resonance width, whose reduction is within 0.2

MeV. In addition, the change of the width is larger for the

spin unaligned state than that for the spin aligned state,

such as the spin doublets (3p1=2, 3p3=2) of 40Ca. In an

isotope, the state with the same quantum number always

decreases with the increasing neutron number, such as 2f5=2

in 100;132Sn. These indicate that the contribution of the

Coulomb exchange term to the proton resonance width is

related to the specific nucleus and the quantum numbers of

the state. Furthermore, the relative deviations of resonant

widths are presented in Fig. 8. It is found that the relative

deviations of the resonant widths for the states with high

angular momentum are generally large, though their

absolute deviations are very small. This can be understood

since their resonant widths are generally very small.

4 Summary

In summary, the influence of the Coulomb exchange

term on the single-proton resonances is investigated with

the complex scaling method based on the relativistic mean-

field model. Taking Sn isotopes and N ¼ 82 isotones as

examples, it is found that the Coulomb exchange term

reduces the single-proton resonance energy, and the

dependence of this influence on neutron number and proton

number is so weak that energy reduction is within the range

of 0.4–0.6 MeV. Therefore, the isotopic and isotonic trends

Fig. 6 (Color online) The differences of single-proton resonance

energies (Er � E�
r ) and widths (C� C�) for N ¼ 82 isotones by

phenomenally including the Coulomb exchange term

Fig. 8 (Color online) The same as Fig. 7 but for the relative

deviations of resonant widths ðC� C�Þ=C

Fig. 7 (Color online) The difference of single-proton resonance

widths for doubly magic nuclei 40Ca, 56;78Ni, 100;132Sn, and 208Pb by

phenomenally including the Coulomb exchange term
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of the resonance energy are similar to those without the

Coulomb exchange term. Moreover, the Coulomb

exchange term also reduce the single-proton resonance

width, and the reduction is generally larger for the border

single-proton resonance. For Sn isotopes, the influence of

the Coulomb exchange term on the resonance width gen-

erally decreases with the increasing neutron number, while

it increases with the increasing proton number for N¼ 82

isotones. However, the influence of the Coulomb exchange

term on resonance width is still not large enough to change

the trend of resonance width with respect to the neutron

number and proton number. Furthermore, the influence of

the Coulomb exchange term on resonance width is further

investigated in a wide range of nuclear region, taking the

doubly magic nuclei 40Ca, 56;78Ni, 100;132Sn, and 208Pb as

examples. It is found that the Coulomb exchange term

reduces the proton resonance width within 0.2 MeV, whose

magnitude depends on the specific nucleus and the quan-

tum numbers of resonant states.
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