

ALD-coated ultrathin Al₂O₃ film on BiVO₄ nanoparticles for efficient PEC water splitting

Guo-Liang Chang^{1,2} · De-Gao Wang² · Yu-Ying Zhang² · Ali Aldalbahi³ · Li-Hua Wang² · Qian Li² · Kun Wang²

Received: 17 May 2016/Revised: 22 June 2016/Accepted: 1 July 2016/Published online: 25 August 2016 © Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2016

Abstract Bismuth vanadate (BiVO₄) is a promising semiconductor material for solar energy conversion via photoelectrochemical (PEC) water splitting, whereas its performance is limited by surface recombination due to trapping states. Herein, we developed a new method to passivate the trapping states on BiVO₄ surface using ultrathin aluminum oxide (Al₂O₃) overlayer by atomic layer deposition. The coated ultrathin Al₂O₃ film on BiVO₄ significantly enhanced photocurrent densities of the BiVO₄ anodes under standard illumination of AM 1.5 G (100 mW/cm²). The electrochemical impedances and photoluminescence spectra were studied to confirm that the improved PEC water splitting performance of BiVO₄ was due to the decreased surface recombination

This work was supported by the National Natural Science Foundation of China (21473236, 21227804), the Shanghai Municipal Commission for Science and Technology (13NM1402300) and the Chinese Academy of Sciences. Ali Aldalbahi acknowledges the support by the Deanship of Scientific Research, College of Science Research Center at King Saud University.

Kun Wang nanowangkun@sinap.ac.cn

- ¹ Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, China
- ² Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- ³ Chemistry Department, King Saud University, Riyadh 11451, Saudi Arabia

state on BiVO₄, which effectively enhanced the charge separation.

Keywords Ultrathin Al_2O_3 overlayer \cdot Photoelectrochemical water splitting \cdot Surface state \cdot Atomic layer deposition

1 Introduction

Photoelectrochemical (PEC) water splitting offers the ability to convert solar energy into chemical energy by producing O_2 and H_2 gases [1, 2]. Bismuth vanadate (BiVO₄) has become a promising n-type semiconductor for PEC water splitting since 1999 when it was reported by Kudo et al. [3, 4] as a photocatalyst for water oxidation. Monoclinic scheelite BiVO₄ has high light absorption (bandgap, $E_g = 2.4 \text{ eV}$), ample abundance, low toxicity and appropriate valence band position for O_2 evolution [3], but it suffers from poor electron transfer and collection in the photoelectrode, and sluggish water oxidation kinetics [3–5]. Efforts having been made to alleviate these restrictions include doping with nitrogen [6], introducing catalysts such as Co-Pi [7], p-type Co₃O₄ [8], NiOOH [9] and constructing nanostructures or heterojunctions [10–12]. The use of passivation layers has been an effective way to improve charge separation and transfer at semiconductorliquid interfaces [13], for example, using Al_2O_3 [14] or TiO_2 [15, 16] and other nanomaterials [17–19] to passivate hematite, and NiO or CoO_x to passivate BiVO₄ [20, 21]. We developed a new method to passivate BiVO₄, in which atomic layer deposition (ALD) was utilized to deposit an ultrathin Al₂O₃ overlayer on BiVO₄ photoanodes, which perform much better in PEC water splitting.

2 Experimental

2.1 Preparation of BiVO₄ photoanode

Fluorine-doped tin oxide-coated glass substrates (FTO, TEC15, NSG) were seriatim cleaned with acetone, ethanol and deionized water. The mixed precursor (0.486 g bismuth nitrate pentahydrate, 1 mL acetylacetone and 0.273 g vanndyl acetylacetonate, from Sinopharm or Sigma-Aldrich) was dissolved in 20 mL acetic acid. The mixed precursor of 10 µL was dropped on to a FTO glass (available area $10 \text{ mm} \times 10 \text{ mm}$) by pipettor. After 30 min, the glass was heated in an air oven to 450 °C for 2 min and allowed to cool down in air. After repeating this procedure for five times, the sample was calcined in at 550 °C for 4 h. As the glass cooled down, a thin yellow film could be seen on the FTO glass. The ALD process used deionized water and $Al(CH_3)_3$ (trimethylaluminum) as precursors, and film thickness of Al₂O₃ could be controlled in angstrom scale. Typical pulse durations for trimethylaluminum and water were 0.05 and 0.03 s, respectively. After ALD depositing, the samples were heated in a furnace at 380 °C for 0.5 h to produce uniform and crystalline Al₂O₃ layer.

2.2 Material characterization

Morphologies of the samples were characterized with a scanning electron microscope (SEM JME2011, JEOL, Japan) and a high-resolution transmission electron microscope (HRTEM, FEI TECNAI G2 F20). TEM samples were prepared by scrapping the BiVO₄ film from the FTO glass with a new blade and transferring the powder carefully into an EP tube containing methanol (HPLC class). X-ray photoelectron spectra (XPS) were measured with a PerkinElmer 1257 model, operating at an average base pressure of $\sim 5.9 \times 10^{-9}$ Torr at 300 K with a non-monochromatized Al K α line at 1486.6 eV and a hemispherical sector analyzer with resolution of 25 MeV.

2.3 Electrochemical characterization

The BiVO₄ photoanodes were fabricated by sealing the BiVO₄ electrodes (including the edges) with epoxy resin except for a 0.25-cm² square (unsealed) left for photoexcitation. An external Cu wire was connected to the FTO surface using a 63/37 Sn/Pb solder (Youbang Soldering Company, Hangzhou, China). An Autolab electrochemical station (Metrohm AG, Switzerland) equipped with a NOVA 1.8 software was employed to study electrochemical properties and stability of the as-fabricated

photoanodes in a three-electrode electrochemical cell. The photoanodes were illuminated on the FTO side and tested.

2.4 PEC measurements

PEC activity of the samples was measured using line scan voltammetry in a standard three-electrode setup. BiVO₄ photoanode was regarded as the working electrode, a platinum plate as the counter electrode, and Ag/AgCl as the reference electrode. PBS (pH 7) was used as electrolyte in the measurements. The photocurrent density of each photoanode was recorded by the Autolab electrochemical station under the simulate light of 100 mW/cm² provided by a 500-W Xe lamp (Newport, Model SP 94023A) with an AM 1.5 G filter. The light intensity was standardized in advance using a calibrated silicon photodiode (Newport, 91150 V). The same lamp was used in photocurrent transient measurement. Electrochemical impedance spectra (EIS) were collected by the Autolab electrochemical workstation.

3 Results and discussion

The BiVO₄ photoanodes were prepared by dropping mixed precursor on FTO substrates; BiVO₄ nanoparticles were formed after crystallization. Ultrathin Al₂O₃ films were coated on BiVO₄ photoanodes via ALD process (Fig. 1a). SEM images in Fig. 1b, c show similar morphologies of BiVO₄ photoanodes before and after ALD process (5 cycles), indicating that ALD coating Al₂O₃ had little effect on the morphology of BiVO₄ photoanode. TEM images in Fig. 1d, e show that the $BiVO_4$ and $BiVO_4$. Al₂O₃ particles have an interlunar spacing of 0.309 nm, being well consistent with the JCPDS 75-2480, and the pristine and coated nanostructures do not differ from each other. According to Ref. [14], the 5-cycle Al₂O₃ is 0.75 nm thick (by spectroscopic ellipsometry on Si) and that is probably why the ALD treatment has little influence on the morphology and nanostructure of BiVO₄.

The electronic structure of BiVO₄ was checked by XPS (Fig. 2a–c). The pure BiVO₄ sample exhibited typical spin–orbit split of Bi $4f_{5/2}$ and Bi $4f_{7/2}$ signals, and V $2p_{1/2}$ and V $2p_{3/2}$ signals, in agreement with the literature [22, 23]. This confirms that the BiVO₄ sample prepared was identically the monoclinic scheelite BiVO₄. For the Al₂O₃-coated BiVO₄ sample, as shown in Fig. 2d, Al was detected, and a significant shift of O 1*s* peak can be seen in Fig. 2e, indicating two crystal structures in the sample. All these were consistent with the fact that the Al₂O₃ layer had covered the samples through ALD deposition.

PEC performance of the $BiVO_4$ photoanodes before and after the ALD process was investigated. As shown in

Fig. 1 Schematic illustration of preparing Al_2O_3 -coated $BiVO_4$ particles (**a**), *top-view* SEM images of the pristine and Al_2O_3 -coated $BiVO_4$ photoanode (5 cycles) (**b**, **c**), and TEM images of the pristine and Al_2O_3 -coated $BiVO_4$ (5 cycles) (**d**, **e**)

Fig. 3a, the photocurrent densities of Al_2O_3 -coated BiVO₄ photoanodes were significantly higher than the pristine. In particular, the photocurrent density of BiVO₄·Al₂O₃ photoanode by 5 ALD cycles reached over 1.0 mA/cm² at 1.23 V versus RHE under the standard illumination of AM 1.5 G (100 mW/cm²), which was twice of the pristine one's. It confirms that Al₂O₃ overlayer deposition can strongly enhance the PEC performance of BiVO₄ photoanodes. Yet, when by further increasing the ALD cycles to 10 ALD cycles, the photocurrent density decreased, partly because of the large increased resistance in the Al₂O₃ overlayer. In fact, the Al₂O₃-coating was optimized at 5 ALD cycles.

Photocurrent transient measurement was performed to assess the charge recombination at the sample/electrolyte interface. The measurement was taken under curtain bias potential, and the time-resolved photocurrent was recorded, while the illumination was turned on and off, with the BiVO₄·Al₂O₃ sample of 5 ALD cycles. As shown in Fig. 3b, c, the BiVO₄·Al₂O₃ sample at 0.5 and 0.9 V versus RHE has much smaller current spikes than those of the pristine BiVO₄ photoanode. According to Ref. [14], the appearance of sharp spike is mainly because that photogenerated holes accumulate at the interface or oxidize the trap states on the semiconductor surface and in the bulk. A larger bias potential allows the holes to cross over the interface more easily to oxidize water. And, the motion of holes reduces the anodic current. In our experiment, the anodic current spike at 0.5 V versus RHE is much higher than that at 0.9 V versus RHE. After the ALD treatment,

Fig. 2 X-ray photoelectron spectra of the pristine $BiVO_4$ sample (a-c) and the Al_2O_3 -coated $BiVO_4$ sample (d, e)

Fig. 3 Photocurrent densities of Al_2O_3 -coated BiVO₄ photoanodes under simulated solar illumination (a) and, light chopping photocurrent densities at 0.5 (b) and 0.9 (c) V versus RHE, for BiVO₄ photoanodes before and after 5-cycle Al_2O_3 deposition

the current spikes became smaller and much smoother. This suggests that the charge recombination on the surface of $BiVO_4$ photoanode may be passivated after depositing the ultrathin Al_2O_3 overlayer.

To better support this hypothesis, photoluminescence (PL) of the Al_2O_3 -coated BiVO₄ sample (5 cycles) was studied. PL spectroscopy is an effective technique to study separation efficiency of the photogenerated carriers. The higher PL intensity indicates the bigger probability of charge recombination [24]. Figure 4 shows the PL quantum yield of the Al_2O_3 -coated BiVO₄ photoanode was smaller than the pristine one, indicating that the charge recombination in BiVO₄ photoanode was effectively inhibited after the Al_2O_3 coating [8]. Therefore, the ultrathin Al_2O_3 overlayer can effectively passivate the charge recombination on the surface of BiVO₄ photoanodes.

Fig. 4 The PL emission spectra of $BiVO_4$ photoanode before and after Al_2O_3 deposition (5 cycles)

Also, electrochemical impedance spectroscopy (EIS) was performed with the samples covered with 5 ALD cycles Al_2O_3 and the control (without Al_2O_3 overlayer). Here, we used an equivalent circuit consisted of 2 RC elements in series, accounting for semiconductor behavior and surface processes, as shown in Fig. 5a [14, 25].

In Fig. 5b, space charge resistances (R_{SC}) of the samples before and after ALD treatment are all stable around $10^3 \Omega$. but a remarkable decrease in charge transfer resistances $(R_{\rm CT})$ can be seen after ALD treatment (Fig. 5c). The $R_{\rm CT}$ decrease could lead to a reduction of overpotential, hence the increase in photocurrent we observed. Yet it will be much clearer to reveal the effect of Al₂O₃ layer, when we look into the change in Helmholtz capacitance $(C_{\rm H})$ or space charge capacitance (C_{SC}) after ALD treatment (Fig. 5d, e). The C_{SC} increased and C_H decreased as a result of Al₂O₃ coating. As capacitance is the charge over voltage, so the $C_{\rm H}$ decrease after the ALD treatment may be related to the change in voltage or charge distribution at the sample/electrolyte interface. In this experiment, the $C_{\rm H}$ decrease is due to the decreased free charge density in surface trap states because of the passivation of surface states. Another reason is that the relatively high dielectric of Al₂O₃ layer may improve the charge screening of anions in Helmholts layer [14]. On the other hand, as shown in Fig. 5d, after ALD treatment, the space charge capacitance (C_{SC}) increased significantly in the entire range of potential bias applied. According to Ref. [14], this can be explained as follows: in order to balance the applied voltage, charges are extracted more from the space charge layer than before due to the decrease in surface states, leading to charge increase in the space charge region [14], i.e., the significant increase of C_{SC} . Therefore, we can conclude that the Al₂O₃ overlayer brought about a significant decrease in the charge density on the surface (surface states), and better performance of the BiVO₄ photoanode.

4 Conclusion

In summary, ALD coating ultrathin Al₂O₃ overlayer can effectively enhance the PEC water splitting performance of BiVO₄ photoanodes. Particularly, 5 ALD cycles Al₂O₃ deposition increased the photocurrent density of BiVO₄ photoanode from ~ 0.5 to ~ 1.0 mA/cm², at 1.23 V versus RHE under the standard illumination (100 mW/cm²). In transient photocurrent measurement, the anodic current spikes of the sample became much smoother after depositing Al₂O₃ overlayer. In photoluminescence spectra, the photoluminescence quantum yield of the Al₂O₃-coated BiVO₄ photoanode was smaller than the pristine one. And in electrochemical impedance measurement, the charge transfer resistance and capacitance of Al₂O₃-coated sample differed significantly from the pristine. All of these provide convincing evidence that Al₂O₃ overlayer successfully passivates the surface trap states of BiVO₄, thus inhibits charge recombination and benifits the performance of BiVO₄. Though the stability of Al₂O₃-coated BiVO₄ in

Fig. 5 Electronic equivalent circuit **a** signing the photoanode/electrolyte system in our EIS measurement before and after 5 ALD cycles of Al_2O_3 , the space charge and charge transfer resistances (**b**, **c**), and the space charge and Helmholtz capacitances (**d**, **e**)

G.-L. Chang et al.

electrolyte (PBS) was not as good as expected, it still provides a promising approach to passivate $BiVO_4$, and thus improve the performance of $BiVO_4$ for efficient photoelectrochemical water splitting.

References

- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). doi:10.1038/ 238037a0
- M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). doi:10.1038/35104607
- Y. Park, K.J. McDonald et al., Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42(6), 2321–2337 (2013). doi:10.1039/C2CS35260E
- A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO₄ powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. **121**(49), 11459–11467 (1999). doi:10.1021/ja992541y
- J.A. Seabold, K.S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134(4), 2186–2192 (2012). doi:10.1021/ja209001d
- T.W. Kim, Y. Ping, G.A. Galli et al., Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 6, 8769 (2015). doi:10.1038/ncomms9769
- M. Zhou, J. Bao, W.T. Bi et al., Efficient water splitting via a heteroepitaxial BiVO₄ photoelectrode decorated with Co–Pi catalysts. Chem. Sus. Chem. 5(8), 1420–1425 (2012). doi:10. 1002/cssc.201200287
- X.X. Chang, T. Wang, P. Zhang et al., Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co₃O₄/ BiVO₄ photoanodes. J. Am. Chem. Soc. **137**(26), 8356–8359 (2015). doi:10.1021/jacs.5b04186
- 9. T.W. Kim, K.S. Choi, Nanoporous $BiVO_4$ photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science **343**(6174), 990–994 (2014). doi:10.1126/science. 1246913
- R. Saito, Y. Miseki, K. Sayama, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO₄/ SnO₂/WO₃ multi-composite in a carbonate electrolyte. Chem. Commun. 48(32), 3833–3835 (2012). doi:10.1039/C2CC30713H
- X.J. Shi, I.Y. Choi, K. Zhang et al., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014). doi:10.1038/ncomms5775
- 12. L.W. Zhang, E. Reisner, J.J. Baumberg, Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO₄

photoanodes for solar water oxidation. Energy Environ. Sci. **7**(4), 1402–1408 (2014). doi:10.1039/C3EE44031A

- R. Liu, J. Spurgeon, X.G. Yang, Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504–2517 (2014). doi:10. 1039/C4EE00450G
- F.L. Formal, N. Tétreault, M. Cornuz et al., Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737–743 (2011). doi:10.1039/ c0sc00578a
- 15. X.G. Yang, R. Liu, C. Du et al., Improving hematite-based photoelectrochemical water splitting with ultrathin TiO_2 by atomic layer deposition. ACS Appl. Mater. Interfaces **6**(15), 12005–12022 (2014). doi:10.1021/am500948
- P. Wang, D. Wang, C. Peng, C. Fan, TiO₂ nanorod arrays of a high photo-to-hydrogen efficiency for photoelectrochemical water decomposition. Nucl. Tech. **35**, 472–476 (2012). doi:10. 11889/j.0253-3219.2012.hjs.35.472
- Y. Zhang, T. Tian, Y. Sun, Y. Zhu, Q. Huang, The biocatalytic activity of inorganic nanomaterials. Chin. Sci. Bull. 59, 158–168 (2014). doi:10.1360/972013-311
- M. Liu, K. Wang, N. Chen, L. Wang, Radiotherapy enhancement with gold nanoparticles. Nucl. Tech. 38, 090501–090506 (2015). doi:10.11889/j.0253-3219.2015.hjs.38.090501. (in Chinese)
- D. Zhu, X. Zuo, C. Fan, Fabrication of nanometer-sized gold flower microelectrodes for electrochemical biosensing applications. Sci. Sin. Chim. 45, 1214–1219 (2015). doi:10.1360/ N032015-00039
- M. Zhong, T. Hisatom, Y.B. Kuang et al., Surface modification of CoO_x loaded BiVO₄ photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137(15), 5053–5060 (2015). doi:10.1021/jacs.5b00256
- M.F. Lichterman, M.R. Shaner, S.G. Handler et al., Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. J. Phys. Chem. Lett. 4(23), 4188–4191 (2013). doi:10.1021/jz4022415
- K. Hirota, G. Komatsu, M. Yamashita et al., Formation, characterization and sintering of alkoxy-derived bismuth vanadate. Mater. Res. Bull. 27(7), 823–830 (1992). doi:10.1016/0025-5408(92)90177-2
- M.C. Long, W.M. Cai, J. Cai et al., Correlation of electronic structures and crystal structures with photocatalytic properties of undoped, N-doped and I-doped TiO₂. Chem. Phys. Lett. 40(1–3), 71–76 (2006). doi:10.1016/j.cplett.2005.12.036
- 24. D.K. Ma, M.L. Guan, S.S. Liu et al., Controlled synthesis of olive-shaped $Bi_2S_3/BiVO_4$ microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. **41**(18), 5581–5586 (2012). doi:10.1039/C2DT30099K
- J. Wielant, V. Goossens, R. Hausbrand et al., Electronic properties of thermally formed thin iron oxide films. Electrochim. Acta 52(27), 7617–7625 (2007). doi:10.1016/j.electacta.2006.12. 041