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Abstract An improvement for application of Dancoff

factor is developed. It combines Stamm’ler’s two-term

method for resonance integral calculation with neutron

current method for Dancoff factor calculation. Stamm’ler’s

formulation, which is originally derived for the infinite

lattice geometry, can be easily revised to contain the

Dancoff factor explicitly, while the neutron current method

can easily calculate the Dancoff factor for general irregular

assembly geometry. For the resonance interference effects,

the resonance interference factor table is built in pairs of

nuclides, only for the interference between 238U and other

resonance nuclides, spanning over a range of background

cross-section and number density ratio of the pairing

nuclides. A series of verification calculations have been

carried out for problems of infinite lattice and single

assembly geometry, with two or multiple resonance

absorbers. For these verification calculations, our

improvement on Dancoff factor application and resonance

interference give good results.

Keywords Resonance � Self-shielding � Equivalence

theory � Dancoff factor � Neutron current method �
Stamm’ler’s method � Resonance interference effect �
Resonance interference factor

1 Introduction

The conventional method of evaluating effective reso-

nance cross-section is based on the equivalence theory,

which turns the effect from moderator in heterogeneous

models into the escape cross-section. Under equivalence

theory, the background cross-section for heterogeneous

models can be divided into two parts, one from the

homogeneous medium and another from the escape cross-

section. Stamm’ler’s method [1, 2], which is an equiva-

lence theory method built on Carlvik’s two-term rational

approximation, is originally derived for the case of infinite

lattice geometry, making use of first-flight collision

probability and transmission probability. Another equiva-

lent theory method, the Dancoff method, applies the

Dancoff factor directly to the escape cross-section of an

isolated fuel rod surrounded with infinite moderator. It is

derived by using either Wigner’s one-term rational

approximation or by taking the limit of infinite absorption.

The Dancoff method is easier to apply in general as it

involves only the calculation of Dancoff factor, while the

Stamm’ler’s method is difficult to apply to cases of non-

lattice geometry, though it is more accurate than the

Dancoff method.

Sugimura and Yamamoto [3] developed the neutron

current method to calculate in a easy way the Dancoff

factor for irregular assembly geometry, which requires

only a fixed source transport calculation with ‘‘black’’ fuel

rods.

In this paper, we propose to rewrite the Stamm’ler

equations so that the Dancoff factor appears there explic-

itly. The neutron current method can then be used to cal-

culate the Dancoff factor for irregular assembly geometry

and to apply it to the Stamm’ler equations. The method of
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characteristics [4] is applied to the fixed source transport

calculation in the limit of black fuel rods.

When the multi-group cross-section library is generated,

the resonance cross-section does not include the interfer-

ence effect between different kinds of absorbers. In reality,

there are always multiple resonance nuclides, especially

with burnup of the fuel, the presence of the additional

resonances will exaggerate the spectral flux dips and

change the results in calculation. In common practice, the

background cross-section iteration method [5, 6] is often

used to correct the interference effects. But the iteration

method is crude and not very effective.

In more recent methods of lattice calculation, the res-

onance interference effect among different resonance

absorbers can be taken into account by resonance inter-

ference factors (RIFs) [7, 8], which are calculated and

tabulated before evaluating the effective cross-section,

and used as correction multipliers to the effective cross-

section.

In the presented paper, a simplified evaluation of reso-

nance interference factor table is done. For a typical reactor

design, 238U dominants the number density of the reso-

nance absorbers. So the interference effect between any

two resonance absorbers other than 238U can be ignored

for simplicity. The RIFs between 238U and another reso-

nance nuclide are tabulated for different background cross-

sections and different number density ratios.

The theoretical considerations are discussed in detail in

Sect. 2 and verified in Sect. 3 for problems of infinite lat-

tice geometry and single assembly geometry, with two or

multiple resonance absorbers. The results for the case of

infinite lattice geometry with only two resonance absor-

bers, for the case with multiple resonance absorbers, and

for the case of single assembly geometry, are given.

2 Theory

The neutron slowing-down equation, the Stamm’ler’s

method, and the Yamamoto’s neutron current method are

briefly reviewed and summarized in Sects. 2.1–2.3. In

Sect. 2.4, we discuss how to apply Yamamoto’s Dancoff

factor calculation to Stamm’ler’s method of resonance

integral calculation. The simplified RIF table is discussed

in Sect. 2.5. Finally, Sect. 2.6 describes the overall calcu-

lation procedure for implementing the improvement.

2.1 Neutron slowing-down equation

For an isolated fuel rod, the neutron slowing-down

equation is:

X

t;f

ðEÞ/fðEÞVf ¼VfPffðEÞ
Z E=af

E

P
s;fðE0Þ/fðE0Þ
ð1�afÞE0 dE0

þVmPm0ðEÞ
Z E=am

E

P
s;mðE0Þ/mðE0Þ
ð1�amÞE0 dE0;

ð1Þ

where a ¼ ½ða� 1Þ=ðaþ 1Þ�2; a is mass number of the

nuclide;
P

t;fðEÞ is total cross-section in fuel region;P
s;fðEÞ and

P
s;mðEÞ are scattering cross-section in fuel

and moderator region, respectively; /fðEÞ and /mðEÞ are

flux in fuel and moderator region, respectively; PffðEÞ is

first-flight collision probability in the fuel region; Pm0ðEÞ is

first-flight escape probability in the moderator region; Vf is

volume of fuel region and Vm is volume of moderator

region.

In moderator region, assuming that the 1 / E spectrum is

suitable and
P

s;fðEÞ is constant in the integral, the second

term on the right part in Eq. (1) can be simplified. And

assuming that the absorption cross-section in moderator is

negligible, total cross-section is equal to the scattering

cross-section. Substituting the reciprocity relationship of

Eq. (2) into Eq. (1) and using some approximation, the

neutron spectrum can be solved as Eq. (3).
X

t;f

Vfð1 � PffðEÞÞ ¼
X

t;m

ðEÞVmPm0ðEÞ; ð2Þ

/fðEÞ ¼
kPff

P
p;f þð1 � PffÞ

P
t;fP

t;f �ð1 � kÞPff

P
p;f

� 1

E
; ð3Þ

where k is the Goldstein–Cohen factor, with k ¼ 1, k ¼ 0

and 0\k\1 being the narrow, wide and intermediate

resonance approximation, respectively.

If the PffðEÞ in isolated fuel rod is replaced with the

first-flight collision probability in a lattice model, PFFðEÞ,
the neutron spectrum in the lattice model can be written as:

/fðEÞ ¼
kPFF

P
p;f þð1 � PFFÞ

P
t;fP

t;f �ð1 � kÞPFF

P
p;f

� 1

E
: ð4Þ

2.2 Stamm’ler’s method for evaluating the effective

cross-section

In an infinite lattice system, according to 0’s method, the

PFFðEÞ and PffðEÞ can be correlated as:

PFF ¼ Pff þ
xð1 � PffÞ2

xð1 � PffÞ þ A
; ð5Þ

where A ¼ Sbc0
b=ðSf t

2
fbÞ, Sb is surface area of cell boundary,

Sf is surface area of fuel lump, c0
b is blackness of the cell atP

t;f ¼ 0, and tfb is transmission probability that neutrons

leaving a fuel surface with cosine angular distribution will
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reach the cell boundary; x ¼
P

t;f =
P

e,
P

e ¼ Sf=ð4VfÞ, Vf

is volume of fuel lump.

The expression of Pff in Carlvik’s two-term rational

approximation is as follows:

Pff ¼ x
2

xþ 2
� 1

xþ 3

� �
: ð6Þ

Substituting Eq. (6) into Eq. (5), we have the expression of

PFF with two-term rational approximation:

PFF ¼ x
b1

xþ a1

þ b2

xþ a2

� �
; ð7Þ

where a1;2 ¼ ð5Aþ 6ÞðA2 þ 36Aþ 36Þ=½2ðAþ 1Þ�,
b1 ¼ ½ð4Aþ 6Þ=ðAþ 1Þ � a1�=ða2 � a1Þ, and b2 ¼ 1 � b1.

Substituting Eq. (7) into Eq. (4), and assuming that

ð1 � kÞrs;F is far smaller than rt;F, we have:

/fðEÞ ¼
X2

n�1

bn
krp;f þ anre

ra;fðEÞ þ krrs;fðEÞ þ krp;f þ anre

� �
1

E
;

ð8Þ

Equation (9) defines effective cross-section of a single

resonance nuclide in group g. Substituting Eq. (8) into

Eq. (9) and assuming krrs;fðEÞ is far smaller than ra;fðEÞ,
too, the effective cross-section can be defined by Eq. (10):

rx;g ¼
R
DEg

rxðEÞ/fðEÞdER
DEg

/fðEÞdE
; ð9Þ

rx;g ¼
RI1;x þ RI2;x

Dug � RI1;a
rb1

� RI2;a
rb2

; ð10Þ

where RIn;x ¼ bnFxðrbnÞ, rbn ¼ krp:f þ anre, FxðrbnÞ ¼R
DEg

rbnrx;fðEÞ
ra;fðEÞþrbn

g dE
E

, and Dug ¼
R
DEg

dE
E

.

In Eq. (10), Dur is usually adjusted to unity by the

library. The resonance integral FxðrbnÞ will be determined

by the interpolation in the resonance integral table which

will be supplied by the nuclear data library. Therefore, to

evaluate the effective cross-section, parameter A in

Stamm’ler’s method is calculated in advance. In the original

Stamm’ler’s derivation, A is a characteristic constant for a

given infinite lattice problem and is evaluated by using

collision probability method. Instead of using the collision

probability method to calculate A, we will relate A to

Dancoff factor and then use Yamamoto’s neutron current

method to calculate the Dancoff factor in a simple way,

which is valid even for the non-lattice assembly geometry.

2.3 The neutron current method for calculating

Dancoff factor

According to Eq. (4), the total reaction rate can be

written as:

RtotðEÞ ¼
X

t;f

ðEÞ/fðEÞ ¼
P

t;fðEÞP
t;fðEÞ � ð1 � kÞPFFðEÞ

P
p;f

� kPFFðEÞ
X

p;f

þð1 � PFFðEÞÞ
X

t;f

ðEÞ
" #

:

ð11Þ

Taking the black-limit of very large total cross-section, the

limit of Eq. (11) can be expressed as:

limP
t;f
!1

Rtot ¼ limP
t;f
!1

kPFF

X

p;f

þð1 � PFFÞ
X

t;f

 !
: ð12Þ

In the black-limit, Wigner’s one-term rational approxima-

tion to PFF is valid:

PFF ¼ x

xþ D
: ð13Þ

Substituting Eq. (12) into Eq. (13), we have:

limP
t;f
!1

Rtot ¼ k
X

p;f

þD
X

e

: ð14Þ

If the total cross-section is large enough, the total reaction

rate is very close to Eq. (14). So when the total reaction

rate in the resonance region is obtained by Yamamoto’s

fixed source transport calculation in the limit of large total

cross-section, the Dancoff factor can be calculated by:

D ¼
Rtot � k

P
p;fP

e

: ð15Þ

In using the Dancoff method for effective resonance cross-

section calculation, the Dancoff factor from Eq. (15) is applied

directly to the equivalent escape cross-section of an isolated

rod to calculate the background cross-section for resonance

integral table lookup. Instead, we propose to apply the Dancoff

factor from Eq. (15) to the Stamm’ler’s method equations.

2.4 Application of Dancoff factor to Stamm’ler’s

method

An alternative equivalent definition of Dancoff factor is

given as [2, 3]:

D ¼ limP
t;f!1

1 � PFF

1 � Pff

: ð16Þ

Also note that the first-flight collision probability satisfies

the following relation:

lim
rt;f!1

xð1 � PffÞ ¼ 1: ð17Þ

Substituting Eqs. (5) and (17) into Eq. (16), the relation-

ship between the Dancoff factor and the parameter A in

Stamm’ler’s method is obtained:
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D ¼ A

1 þ A
; or A ¼ D

1 � D
: ð18Þ

Therefore, the neutron current method can be used to cal-

culate D and thus obtain A without having to use the col-

lision probabilities in Eq. (5). Furthermore, the neutron

current method is applicable to the general non-lattice

assembly geometry. Once A is known, the two-term coef-

ficients in Eq. (7) can be calculated. The Stamm’ler’s

method can then be used without any change to calculate

the effective cross-section by Eq. (10).

2.5 Simplification of the resonance interference

factor table

Traditionally the background cross-section iteration

method is used for the resonance interference correction,

but the iteration method is not yet effective. A method

using simplified resonance interference factor (RIF) table is

given below.

In a typical LWR core, the number density of 238U is

usually much larger than that of other resonance nuclides.

The spectrum in the resonance region is dominated by

resonance absorption from 238U. To simplify the resonance

interference treatment, only the interference effects

between 238U and other resonance nuclides are considered.

To correct the resonance overlap (interference) effects, the

resonance interference factors (RIFs) prepared with

Eq. (19) are used.

RIF238!i
x ðrb;i;Ni=N238Þ ¼

reff
x;i ðrb;i;Ni=N238Þ
reff
x;i ðrb;i; 0Þ ; ð19Þ

where reff
x;i ðrb;i; 0Þ is effective cross-section for nuclide i

and reaction type x, at zero number density of 238U, and

background cross-section rb;i; reff
x;i ðrb;i;Ni=N238Þ is effec-

tive cross-section for nuclide i and reaction type x, at a ratio

of number density of Ni=N238, and background cross-sec-

tion rb;i; RIF238!i
x ðrb;i;Ni=N238Þ is resonance interference

factor from 238U to nuclide i and reaction type x, at

number density ratio Ni=N238, and background cross-sec-

tion rb;i.

Corresponding to the overlap effects from 238U to other

resonance nuclides, the interference effects from other

resonance nuclides to 238U at the same number density

ratio (Ni=N238) are calculated by Eq. (20):

RIFi!238
x ðrb;238;Ni=N238Þ ¼

reff
x;238ðrb;238;Ni=N238Þ
reff
x;238ðrb;238; 0Þ :

ð20Þ

Taking 238U as an example, the whole process of evalu-

ating a resonance interference factor is described below.

For reff
x;238ðrb;238; 0Þ, a calculation through solving the

slowing-down equation is done by RMET21 [9], in which

only 238U and hydrogen are present. The background

cross-section is defined as:

rb;238 ¼ k238rp;238 þ
NH

N238

kHrp;H: ð21Þ

The number density of 238U will be set to unity for con-

venience. To get different background cross-sections, we

just need to adjust the number density of Hydrogen.

For reff
x;i ðrb;i;Ni=N238Þ, the calculation is done by

RMET21 in presence of 238U, hydrogen, and nuclide i.

The background cross-section is defined as:

r0b;238 ¼ k238rp;238 þ
Ni

N238

kirp;i þ
NH

N238

kHrp;H; ð22Þ

where rb;238 and r0b;238 are effective cross-section for

nuclide i, group g, and resonance reaction type x, without

and with resonance overlap correction, respectively. In

Eq. (22), the value of Ni=N238 will cover the possible range

in a typical LWR. To make r0b;238 equal rb;238, we just need

to adjust the number density of hydrogen.

When the effective cross-sections with and without the

interference effect are obtained, RIF from resonance

nuclide i to 238U is calculated by Eq. (20). For a typical

lattice, the flux spectrum varies with the background cross-

section, caused by different number densities of 238U or

different shielding conditions. So, a series of calculations

Table 1 Description of two

calculation methods
Methods Stamm’ler’s method Improved use of Dancoff factors Treatment of resonance interference

Iteration RIFs

A
p p

B
p p

C
p p

Fig. 1 Cell geometry for infinite lattice calculation
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with different background cross-sections and different

number density ratios are carried out.

For resonance nuclides other than 238U, the effective

cross-section for a specific resonance nuclide without the

resonance interference correction is calculated by interpo-

lating the nuclear data library, before interpolating the RIFs

table to obtain RIF. Finally, the RIF is multiplied to the

uncorrected effective cross-section as:

r0x;i;g ¼ RIF238!i
x;g � rx;i;g; ð23Þ

where RIF238!i
x;g is resonance interference factor for nuclide

i, group g, and resonance reaction type x.

For 238U, the resonance interference effects from other

resonance nuclides to 238U are counted into the correction

as:

r0238;x;g ¼
Y

i0
RIFi0!238

x;g

 !
� r238;x;g; ð24Þ

where Pi0RIFi0!238
x;g is cumulative product of resonance

interference factors from all resonance nuclides to 238U.

2.6 Calculation procedure

The calculation procedures for implementing the

improvement are described as follows.

1. Prepare table of RIFs as described in Sect. 2.5.

Fig. 2 Error to reference eigenvalue as a function of 235U enrichment

for the two absorbers case

Table 2 Micro-cross-section and relative error in absorption and neutron production for 235U of 1.8 % inrichment and 238U in Case-A

Energy

groups
Absorption of 235U Neutron production of 235U Absorption of 238U

Pa
dð%Þb

Pa
dð%Þb

Pa
dð%Þb

Method A Method B Method A Method B Method A Method B

15 4.4904 0.02 0.02 7.9300 0.05 0.04 0.69442 -0.19 -0.17

16 5.6824 -0.12 -0.10 10.420 -0.12 -0.09 0.73277 -0.81 -0.78

17 6.9880 -0.23 -0.17 12.586 -0.22 -0.22 0.94726 -1.65 -1.60

18 9.5619 -0.04 0.17 14.984 -0.34 0.11 0.87767 -1.62 -1.56

19 12.184 -0.69 -0.11 19.408 -1.07 -0.08 1.1712 -1.75 -1.71

20 16.946 -0.2 0.25 28.906 -0.13 0.43 1.3449 -2.29 -2.26

21 27.897 -0.36 -1.07 45.743 -1.06 -0.76 1.5361 -0.03 0.05

22 34.768 -0.37 -0.18 53.527 -0.12 -0.51 2.4168 0.06 0.08

23 58.251 -2.36 0.55 99.149 -2.75 0.58 2.1192 -0.71 0.12

24 69.201 -3.37 -0.01 102.82 -2.80 -0.05 4.6044 2.25 2.27

25 74.991 6.58 -1.15 114.81 2.23 -0.56 6.2095 0.40 0.36

26 74.892 -1.03 -0.73 88.854 -0.75 -0.53 0.47409 -0.54 -0.27

27 67.381 -1.04 -1.46 98.015 -8.06 0.25 7.8266 0.79 0.42

a Cross-section of reference
b Relative error

Table 3 Material and number density in Case-A

Materials Fuel rod Clad Moderator

235U
238U 16O Zr-Nat H 16O

Number density (1024=cm3) 4.21236E-04 2.26905E-02 4.62234E-02 3.89087E-02 4.42326E-02 2.21163E-02
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2. Perform fixed source transport calculation for each

resonance group. The macroscopic total cross-section in

resonance region is set to 100,000 (or any number that is

large enough), and set to k
P

p for regions without reso-

nance nuclide. The neutron source is set to k
P

p for all

regions. The transport equation, Eq. (25), is solved with

the MOC (method of characteristics):

r � XWgðr;XÞ ¼
X

t;g

Wðr;XÞ ¼ k
X

p;g

; ð25Þ

where
P

t;g ¼ 105 in resonance region and
P

t;g ¼ k
P

p;g

in non-resonance region. With the solution for the fixed

source transport solution, the total reaction rate for each

resonance region is calculated.

3. Dancoff factor for each resonance region in each

resonance group is calculated through Eq. (15). And

parameter A is calculated through Eq. (18).

4. In resonance regions and for resonance nuclides, the

effective cross-section is calculated through Eq. (10).

5. For resonance nuclide other than 238U, the effective

cross-section is corrected by Eq. (23). For 238U, the

effective cross-section is corrected by Eq. (24).

3 Verification results

Numerical verifications were carried out for cases in

lattice geometry, cases with two absorbers in the reso-

nance region, and cases with multiple absorbers in the

resonance region. To assess the effect coming separately

from the Dancoff factor or the RIF, two calculations

were performed for each case problem. As shown in

Table 1.

Method A used the background cross-section iteration

for resonance interference and Method B used the RIF

table for resonance interference. Both methods used

improved Dancoff factor in Stamm’ler equations. Method

Fig. 3 Error in eigenvalue versus burnup
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C used the traditional Stamm’ler’s method with the back-

ground cross-section iteration for resonance interference as

a contrast. Together with verification for the case of non-

lattice single assembly geometry, all calculations used the

69-groups WIMS-D format micro-library. For all the cases,

continuous energy Monte Carlo calculation [10] was taken

as the reference solution. Both the 69-group micro-nuclear

data library and the continuous energy nuclear data library

were used in all calculations, and verifications were

developed from the basic library: ENDF/B-VII.0. Errors of

eigenvalue in the verification results are all expressed in

pcm, defined as (x� reference) � 105, where x is given by

the tested method.

3.1 Infinite lattice cases

An infinite lattice of hexagonal fuel cells, as shown in

Fig. 1, was used in the lattice calculation. Each side of the

hexagonal cell is 7.83 mm. In the cell, the fuel rod is of

7.862 mm diameter, the clad made of Zr-Nat is 0.649 mm

thick, and the moderator is light water at 300 K in both

resonance and non-resonance regions.

Table 5 Micro-cross-section and relative error in absorption and neutron production for U and Pu in Case-B at burnup of 30 GW d=t

Energy

groups
Absorption of 235U Neutron production of 235U Absorption of 236U

P
a d ð%Þb

P
a d ð%Þb

P
a d ð%Þb

Method A Method B Method A Method B Method A Method B

15 4.4903 0.04 0.03 7.9297 0.06 0.05 1.0488 -1.51 -1.53

16 5.6829 -0.11 -0.09 10.421 -0.12 -0.09 1.2468 -1.65 -1.66

17 6.9896 -0.22 -0.16 12.588 -0.21 -0.21 1.5081 -1.75 -1.77

18 9.5685 -0.07 0.13 14.996 -0.37 0.06 1.9279 -2.88 -2.39

19 12.188 -0.65 -0.08 19.419 -1.06 -0.07 2.7944 -2.97 -1.95

20 16.959 -0.13 0.30 28.924 -0.06 0.49 5.0874 -4.49 -2.60

21 27.983 -0.28 -1.03 45.859 -0.97 -0.71 6.0751 -5.57 -9.20

22 34.903 -0.30 -0.17 53.623 0.05 -0.39 17.340 -7.43 -3.49

23 59.000 -2.68 0.11 100.37 -3.04 0.15 17.684 -11.6 -5.61

24 70.387 -3.19 0.06 104.40 -2.49 0.16 38.844 -14.2 -5.53

25 77.462 5.97 -1.77 118.40 1.62 -1.22 0.0511 -2.98 -1.28

26 78.153 -2.13 -1.86 91.932 -1.95 -1.77 0.1365 -1.10 -1.46

27 70.004 -1.65 -1.81 103.76 -10.13 -1.64 208.25 -4.97 -2.09

Energy groups Absorption of 239Pu Neutron production of 239Pu Absorption of 238U

P
d (%)

P
d (%)

P
d (%)

Method A Method B Method A Method B Method A Method B

15 3.6384 -0.01 -0.02 6.1712 -0.04 -0.04 69.268 -0.23 -0.20

16 4.5680 0.08 0.04 7.1936 0.11 0.08 0.7303 -0.87 -0.83

17 6.1122 -0.18 0.11 9.8722 0.14 0.41 0.9418 -1.70 -1.61

18 7.2395 -0.01 -0.46 10.503 0.55 -0.56 0.8698 -1.61 -1.53

19 10.240 3.16 -0.51 17.738 3.53 -0.59 1.1610 -1.82 -1.68

20 14.618 -2.45 0.34 24.590 -1.91 0.66 1.3305 -2.41 -2.19

21 29.322 -1.82 -3.08 44.010 -1.14 -1.64 1.5170 -0.02 0.06

22 49.759 -1.95 -1.14 85.083 -2.36 -1.34 2.3971 -0.26 0.18

23 100.02 4.41 -2.72 177.93 5.57 -2.95 2.0807 0.10 1.15

24 37.159 -9.15 0.90 29.986 -8.77 0.31 4.5449 2.19 2.71

25 79.071 -8.77 -0.89 122.97 -8.99 -1.21 6.1062 0.60 0.76

26 217.05 -1.83 -1.56 396.23 -2.03 -1.83 0.4759 -0.94 -0.10

27 54.238 -14.30 -2.16 89.712 -13.35 -2.55 7.8411 -0.11 0.95

a Cross-section of reference
b Relative error
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3.1.1 Infinite lattice case with two resonance absorbers

Let the fuel rod contain only UO2, with 235U enrichment

of 0.8–3.6 % in steps of 0.2 %. Figure 2 shows errors of

the eigenvalue as a function of the 235U enrichment. One

sees that Method A differs little from Method C. This

indicates that our goal to find an alternative way to use

Stamm’ler equations without possibility calculation is

achieved. As Methods A and C have almost the same

result, the following discussions will focus on Methods A

and B.

There is a significant improvement in eigenvalue for

Method B over Method A. This shows that the RIF

table works much better than the background cross-section

iteration in capturing resonance interference. The error of

using Method B is around 100 pcm, which is quite

acceptable in practice.

The verification results of 1.8 % enrichment, as a typical

case named as Case-A for the convenience of discussion,

are given in Table 2. Table 3 shows the nuclide composi-

tion in Case-A. The reference eigenvalue at 1.8 %

enrichment is 1:22667 � 0:00009 and the errors to the

reference eigenvalue are �290 and �115 pcm (Fig. 2), for

Methods A and B, respectively. From the microscopic

cross-section for absorption and neutron production by

each resonance nuclide (Table 2), one sees that the inter-

ference effect is mostly on 235U, not on 238U, as the

Method B results are almost the same as the Method A

results for 238U. This is expected because of the large 238U

number density versus the much smaller number density of
235U.

3.1.2 Infinite lattice case with multiple resonance

absorbers

As the fuel burns, different resonance nuclides build up.

A fresh UO2 fuel with 3.1 % enrichment of 235U is taken as

an example to verify the proposed method at different

burnup steps. Figure 3 shows the error in eigenvalue versus

burnup of 10 � 40 GW d=t using Method A or Method B

to model the case. It can be seen that the RIF table captures

the interference effect much better than the background

cross-section iteration method, and the Method B results

are quite acceptable.

The verification results are given in Tables 4 and 5 for

30 GW d=t burnup, as a particular case named as Case-B

for the convenience of discussion. Table 4 shows the

material and number density of nuclides, and Table 5

shows the effective cross-sections for major absorbers

(235U, 238U, and 238Pu). Again, Method B gives better

performance than Method A in most cases for all nuclides

except for 238U. 238U is almost not affected by resonance

interference due to its very large number density. There-

fore, the 238U effective cross-section is not sensitive to

using Method A or Method B. These results are consistent

with those in Sect. 3.1.1.

Fig. 4 Description of the assembly and arrangement of cells (a) and the cell types (b). F stands for fuel, and T stands for guide tube

Fig. 5 Relative error of pin power in the assembly case

36 Page 8 of 9 Y. Han et al.

123



4 The single assembly case

A hexagonal single assembly case is tested to verify the

proposed method for non-lattice geometry. Figure 4a

shows the whole assembly and the sector of one twelfth of

the assembly with reflective boundary condition. The

arrangement of the cells in the selected sector is shown on

the right part of Fig. 4a. The cell types are shown in

Fig. 4b. Type T cell is the guide tube cell filled with

moderator and clad tube. Type F cell is the fuel cell filled

with the fuel rod, clad tube, and moderator. As this is a

rough assembly model, Types T and F cells share the same

clad tube size and structure shown in Fig. 1. All fuel rods

contain UO2 of 1.8 % enrichment.

This single assembly problem was solved using Method

B, and the results were compared to those of continuous

energy Monte Carlo calculation for both eigenvalue and

pin power distribution. The eigenvalue value is 1:24894 �
0:00009; the error is �161 pcm, and the pin power distri-

bution error is 1 % (Fig. 5). It should be noted that for this

non-lattice problem, the Dancoff factor calculated with the

neutron current method is position dependent, different for

every fuel pin.

5 Conclusion

Incorporating the Dancoff factor into the Stamm’ler

equations and evaluating the Dancoff factor by the neutron

current method provide a convenient method to calculate

the effective resonant cross-section. Not only it is easier to

do the calculation but the validity is also generalized to

non-lattice geometry. To correct for the resonance inter-

ference effect, a simplified RIF table can be used ade-

quately. Test problems using the proposed method have

shown very good results for both the lattice geometry case

and the non-lattice geometry case. The use of RIF table is

much better than the conventional background cross-sec-

tion iteration method for resonance interference correction.
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