Studies on irradiation stability of polystyrene by NMR

ZHAO Xin, SUN Wan-Fu, XIE Cheng-Xi (Xinjiang University, Urumqi 830046)

Abstract The irradiation stability of polystyrene (PS) was studied by ¹³C and ¹H NMR spectra, Nuclear Overhauser Relaxation (NOE) and ¹³C NMR spin-lattice relaxation time (T_1). The results indicate that ¹³C and ¹H NMR chemical shifts, NOE and T_1 were almost invariant with the increase of irradiation dose. This shows that polystyrene is particularly stable within 2.5 kGy doses and the mechanism of its stability is discussed.

Keywords Polystyrene, ¹³C NMR, ¹H NMR, Irradiation stability

CLC number 063

1 Introduction

It is well known that NMR can be used to elucidate certain aspects of polymer structure and those properties, which are affected by molecular mobility.^[1,2] In particular, the spin-lattice relaxation time (T_1) and Nuclear Overhauser Effect (NOE) are used to study properties of polymers and the manner in which these are modified by ionizing radiation.

2 Experimental

2.1 Materials and irradiation

Home-made linear polystyrene (PS) was irradiated by a 60 Co source of 3.7×10^{14} Bq at room temperature and a dose rate of 31.3 kGy/h with various total doses.

2.2 NMR measurements

¹³C NMR spectra were recorded on Bruker AMX-500 spectrometer at 25 °C using CHCl₃ as solvent. Chemical shifts were measured with reference to the chemical shift of TMS as zero. The hydrogen resonance frequency was 500.13 MHz and the carbon resonance frequency was 125.75 MHz.

¹³C NMR T_1 was measured by using (180-t-90°) pulse sequence with recycle delay >5 T_1 and error <10%.

NOE was measured by the full and partial decoupled methods.

3 Results and discussion

There are no observable changes in ¹H and ¹³C spectra of polystyrene after the irradiation of 2.5 kGy dose, which shows that the polystyrene is stable. This stability can be explained by the facts that a coordinate structure was formed by –CH- with the chain and its side group phenyl ring, which produced the free radical by the irradiation process. This stability of polystyrene is useful for preparing radiation-resistant materials or the graft copolymerization by radiation.

3.1 ¹H and ¹³C NMR data for polystyrene

The ¹H and ¹³C spectra of polystyrene consist of two peaks belonging to saturated carbon atoms, one of which is connected directly to the phenyl ring. Therefore, according to the chemical shifts of polystyrene, the ¹H and ¹³C spectra of polystyrene were assigned preliminarily.

Table 1 shows that the chemical shifts of saturated carbon and hydrogen atoms of polystyrene are smaller than 46.0 ($\delta_{\rm C}$) and 2.0 ($\delta_{\rm H}$) respectively, but the chemical shifts of the phenyl ring carbon and hydrogen atoms of polystyrene are nearly at 6.46~7.04 ($\delta_{\rm H}$) and 1.43~1.84 ($\delta_{\rm H}$) respectively.

3.2 ¹³C NMR spin –lattice relaxation time (*T*₁) of polystyrene

Since the ¹³C NMR spin-lattice relaxation time

Supported by the Doctor Foundation of Xinjiang University Received date: 2004-01-09

 $(T_{\rm l})$ can provide detailed information on the overall molecular and segmental motion,^[3,4] it can be used to characterize the structure and motion of polymer. The

 T_1 values of polystyrene before and after irradiation with different doses are given in Table 2.

Structure	Position	$\delta_{ m H}$	$\delta_{ m C}$
$(CH - CH_2)_n$	CH ₂	1.43	45.80
	СН	1.84	40.32
	C ¹	_	145.30
	C ² H	6.46	127.66
	C ³ H	6.50	127.97
	C ⁴ H	7.04	125.66

 Table 1
 ¹H and ¹³C NMR data for polystyrene

Table 2 13 C NMR spin-lattice relaxation time (T_i) of polystyrene before and after irradiation with different doses

Dose (kGy)	Dose rate (kGy/h)	Ti (ms)				
		C^1	C^2	C ³	C^4	СН
0	—	685.95	281.52	279.69	249.95	313.68
0.1	31.3	588.97	284.62	266.63	247.34	304.27
0.5	31.3	655.42	294.05	264.04	261.76	320.73
1.0	31.3	636.57	294.05	273.52	261.76	320.73
2.5	31.3	638.84	279.46	283.14	264.85	314.94

From Table 2 we can find that T_1 values of carbon are invariant before and after irradiation. This is attributed to the fact that the T_1 value of carbon atoms gives information mainly about high frequency and short range motion of the chain, and is insensitive to long range segmental motion in polymer structure. In addition, T_1 of C¹ before and after irradiation at room temperature is longer than that of phenyl ring. This retardation is caused by longer chain.

3.3 The NOE factor of polystyrene

The relationship between NOE and the irradiation dose is presented in Table 3.

 Table 3
 The NOE factor of polystyrene before and after irradiation with different doses

Dose (kGy)	Dose rate (kGy/h)	NOE				
		C^1	C^2	C ³	C^4	СН
0	—	0.06	0.44	0.44	0.38	0.48
0.1	31.3	0.05	0.40	0.49	0.41	0.69
0.5	31.3	0.06	0.48	0.49	0.41	0.61
1.0	31.3	0.12	0.44	0.49	0.50	0.62
2.5	31.3	0.02	0.49	0.49	0.48	0.69

As seen in Table 3, the NOE factors of C^1 in the phenyl ring and –CH- carbon in the main chains change more obviously than that of other carbons in the phenyl ring. In the organic systems, the NOE factor depends mainly on the relaxation mechanism and the molecular motion. When the relaxation mechanism is unchanged the NOE factor changes in the radiation system and depends mainly upon the effect of chain structure on segmental motion. Because the free radical of –CH carbon was produced by irradiation, the T_1 becames longer and the motion is slower. The free radical of –CH- with the phenyl for conjugate structure was ratifying again.

References

- Charlesby A, Stevens J H. Int J Radiat Phys Chem, 1976, 8: 719
- 2 Horil F, Kitamaru R, Suzuk T. J Polym Sci Polym Lett, 1977, **15**: 65
- 3 Komoroski R A. High resolution NMR spectroscopy of synthetic polymer in bulk, VCH Publishers, Deerfield Beach,1986: 36
- 4 Fedotov V D, Schneider H. Structure and dynamics of bulk polymers by NMR methods, Berlin: Springer-Verlag, 1989: 48