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1 Introduction 

The interaction of electron beam with materials is 

of especial importance and is the physical foundation 

for many fields of modern science and technology, 

such as scanning electron microscopy (SEM), electron 

probe microanalysis (EPMA), electron beam lithog-

raphy (EBL), radiation biology and radiation thera-

py.[15] 

Using a beam of electrons with incident energy E 

to impact a specimen, various signals such as second-

ary electrons, Auger electrons, X-ray and backscat-

tered electrons could be generated on the surface of 

the specimen due to the interactions between the pen-

etrating electrons and the atoms in the specimen. By 

detecting the secondary electrons or backscattered 

electrons from the specimen, a high-resolution image 

of the sample surface can be presented in SEM. By 

use of the X-ray from the specimen, the quantitative 

information of the components in micro-region of the 

specimen can also be provided by EPMA. Electron 

beam lithography is an important technique for the 

fabrications of large scale and very large scale inte-

grated circuits. In EBL, an incident e-beam depicts a 

pattern on resist film and the penetrating electrons 

interact with the resist film, depositing their energies 

in the resist film and thus causing the breaking of 

bonds. Finally, the pattern contour can be obtained by 

suitable development steps. 

In radiation biology, the interactions of radiation 

origin with biology material lead to various radiation 

effects in biology materials. These radiation effects 

are applied extensively to cell engineering, gene en-

gineering and induced mutation in plant breeding.[69] 

Electron beam is one of the important radiation 

sources. The interactions between other radiation 

beams and biology materials can result in secondary 

electrons with a wide energy distribution and these 

secondary electrons, in turn, interact with the biology 

materials. Therefore, the studies on the interactions of 

energetic electrons with biology materials play an es-

pecially important role in the radiation biology. In 

radiation therapy, electron beam is also an important 

radiation sources. Similarly, the interactions of other 

radiation sources with biology tissues can create sec-

ondary electrons, which will interact with the tissues 

as well. 

As described above, in SEM, EPMA, EBL, radi-

ation biology and radiation therapy, the interaction of 

energetic electron with material is the fundamental 

problem. This problem is also a complicated physical 

process and can be summed up as two types of scat-
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tering events, namely, the elastic and inelastic scatter-

ing. When a primary electron enters the solid, it trans-

fers part of its energy to atomic electrons in the inelas-

tic scattering events, resulting in ionization or excita-

tions. Electron stopping power is a basic physical 

quantity for characterizing the inelastic interaction of 

electron with material and is essentially important for 

understanding basic physical process of the elec-

tron-material interaction. On the other hand, as the 

rapid development of computer technology, Monte 

Carlo simulation has become a main method to inves-

tigate the transport behavior of energetic electrons in 

materials.[5,10] Electron stopping powers are the basic 

input data in Monte Carlo simulations of electron 

transport in matter. Therefore, the stopping power is of 

important significance not only for theoretical study 

but also for practical application in the technologies 

relating to electron beam. 

In Section 2, two basic theoretical systems for the 

calculation of stopping powers, the non-relativistic 

Bethe theory and that based on linear dielectric re-

sponse theory, and their developments are described. 

Due to the importance of stopping powers of electron 

inelastic scattering for organic compounds in many 

application fields, such as electron beam lithography, 

radiation biology and radiation therapy, the results of 

stopping powers obtained by our group for a set of 

polymers and bioorganic compounds are tabulated in 

Section 3. Finally, a brief summary on this review is 

made. 

2 Theoretical development and calculation 
method 

2.1 Bethe theory 

In general, there are two main theoretical systems 

for the calculation of stopping power of energetic 

electrons in matter. One is the non-relativistic Bethe 

theory and the other is based on the linear dielectric 

response theory. 

On the basis of Born approximation, Bethe [11,12] 

derived the following formula to calculate the stop-

ping power of energetic electrons in matter: 

 

(eV/Å) 

       (1) 

where E is the energy of the penetrating electron (in 

eV), s is the path length along the trajectory (in Å),  

is the density (in g/cm3)of the target material, Z is the 

atomic number of the target atom, A is the atomic 

weight of the target, and J is the mean ionization po-

tential of the material (in eV). Commonly, the value of 

J can be evaluated according to Berger and Seltzer’s 

formula[13] as follows 

 

 

 

(2) 

Bethe stopping power theory can well describe 

the energy loss of the penetrating electrons in matter 

at high energies. But this theory is, in general, invalid 

for low-energy electron due to the Born approxima-

tion used in this theory. For example, Bethe stopping 

power theory presents a decrease of the energy loss of 

electrons in Au at energies less than several keV and 

the energy loss becomes negative at energies less than 

about 1 keV. Obviously, these are in conflict with ex-

perimental facts. In spite of the invalidation men-

tioned above for Bethe theory, it is desirable to extend 

Bethe formula into low-energy region with an empiri-

cal or semi-empirical method because Bethe’s expres-

sion is very simple and thus is easy to use in Monte 

Carlo model. 

Rao-Sahib and Wittry[14] extended Bethe’s for-

mula to low-energy region by using a parabolic ex-

trapolation with the consideration that path length per 

unit energy loss approaches zero as the energy goes to 

zero, resulting in the following modified Bethe’s ex-

pression (Rao.SahibWittry equation) 

                       

                      

 

 

(3) 

Rao-Sahib and Wittry applied Eq.(3) to the in-

vestigation of X-ray continuum from thick elemental 

targets with considerable success. Also, Kotera et al.[15] 

used this modified Bethe formula to simulate the 

low-energy electron scattering in an aluminum target. 

In the study of atomic number correction for 

quantitative electron-probe microanalysis, it is re-

quired to calculate the stopping power factor, which 
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was found unnecessarily complex if Rao-Sahib and 

Wittry’s expression was used.[16] Therefore, Love et al. 

suggested an alternative approach[16] for evaluating 

stopping power. 

They wrote Bethe’s expression in terms of the 

variable V=E/J, i.e. 

 

(eV/Å) 

 (4) 

where the function f(V) is in the form: 

 

 

(5) 

The function f (V) against V is approximately parabol-

ic at high V and hence Love et al. expanded the f(V) in 

a series of V1/2, i.e. 

 

f (V) = A+BV1/2+CV+DV3/2+⋯        (6) 

 

Based on the reality that dE/dS must tend to infinity as 

V0, the f (V) tends to zero as V0 and thus the co-

efficient A is equal to zero. They further determined 

the other coefficients B, C, D,⋯ and finally gave f(V) 

in an approximate form as follows 

 

f (V) = 1.18103V1/2+1.47104V      (7) 

 

According to Eqs.(4) and (7), Love et al. ex-

pressed Bethe formula as 

 

(eV/Å) 

    (8) 

Using Eq.(8), Love et al.[17] obtained a simple 

form for the stopping power factor, which was applied 

to the atomic number correction to EPMA with con-

siderable success. Their equation has also been used in 

other applications, for example in quantitative studies 

of electron beam lithography.[18] 

From Lindhard’s theory for an ion beam, Kanaya 

and Okayama[19] derived a formula to calculate energy 

loss of electrons penetrating into a target material due 

to inelastic collisions with atomic electrons. This for-

mula includes two adjustable parameters and can be 

written as 

 

(9) 

where Z is the target atomic number, n is the atomic 

density of the target materials, a = 0.8853a0Z 1/3，a0 is 

the Bohr radius, e is the electron charge, and s and s 

are the unknown parameters. The parameters s and s 

are so determined that the calculated electron range 

coincides with the experimental extrapolated range. 

For instance, Kotera et al.[20] gave s =1.3 and s = 

0.115, respectively, for Au target. However, it is clear 

that the determinations of both s and s are a complex 

calculation process. Thus, Kanaya and Okayama’s 

equation is not convenient to evaluate the stopping 

power of the penetrating electrons in matter. 

Joy and Luo[21] analyzed Rao-SahibWittry 

equation and Love et al.’s equation in detail, and 

compared the corresponding stopping powers with 

those based on a detailed first-principles computation. 

Consequently, Joy and Luo pointed out that the 

Rao-SahibWittry and Love et al.’s expressions have 

no inherent physical significance and also overesti-

mate the stopping power by a factor of two or more 

for energies of a few hundred electron volts or less. 

Therefore, according to Rao-SahibWittry and Love 

et al.’s equations, those quantities related to the stop-

ping power, such as electron range, secondary electron 

and X-ray yields, will be in error. 

According to several authors, e.g. Reimer and 

Stelter,[22] Ritchie et al.,[23] and Shimizu and 

Ichimura,[24] Joy and Luo wrote a more general ver-

sion of the Bethe equation in the form: 

 

(10) 

 

where Z i is the occupancy of the i-th shell as tabulated 

in the work of Reimer and Sletter, Ei is the corre-

sponding binding energy.[24] In Eq.(10), for a given 

energy E, the summation is only carried out over those 

terms i, for which E  Ei. The stopping powers derived 

from Eq.(10) are in excellent agreement with those 

computed from other models.[25] 

On the other hand, Joy and Luo regarded the 

quantity J in Eq.(1) as energy dependent rather than 

constant and wrote Bethe formula in the form: 

 

(11) 
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(12) 

 

where 

 

(13) 

 

Eq.(13) shows clearly that J  is dependent on energy. 

For elements C, Al, Si, Ni, Cu, Ag and Au, by fit-

ting Eq.(11) to the numerical data of the stopping 

powers calculated with Eq.(10), Joy and Luo gave the 

best fitted k values, which are 0.77, 0.815, 0.822, 0.83, 

0.83, 0.852 and 0.851, respectively. 

According to the dependence of these k values on 

atomic number Z, Gauvin et al.[26] gave an empirical 

formula to calculate value of k, i.e. 

 

k = 0.734Z0.037              (14) 

 

The modified Bethe formula of Joy and Luo ena-

bles the calculations of stopping powers to be extend-

ed into low-energy region while maintaining the sim-

plicity and generality of the original Bethe expression. 

So, this formula has been widely used.[2729] 

In above three modified Bethe formulas, the 

formula by Love et al. is the only one with which the 

analytical expression of the Bethe range can be ob-

tained by integration. On the other hand, it is desirable 

to be able to calculate the Bethe ranges of the pene-

trating electrons in Monte Carlo simulation studies on 

electron beam lithography, SEM and EPMA. By 

comparing the formula by Love et al. with that of Joy 

and Luo, Tan and He[30] proposed an improved Love 

et al. formula. 

Let U = (E/J)1/2, then Love et al.’s formula can be 

rewritten as 

 

(15) 

 

where 

 

GL(U) = 1.18+0.147U         (16) 

 

In addition, the calculated stopping power based on 

Joy and Luo equation is, in practice, not strongly sen-

sitive to the value of k, and thus the formula of Joy 

and Luo can be written in the from: 

 

(17) 

 

Tan and He further expressed Eq.(17) as 

 

(18) 

 

where 

 

(19) 

 

Let D(U) = GJ(U)GL(U), by calculating and an-

alyzing the values of D(U) with variable U in the 

range of U≤ 31, which corresponds to the applicable 

range, E/J ≤1000, of the equation of Love et al., Tan 

and He gave an improved formula of Love et al., 

namely 

 

 

(20) 

 

With Eq.(20), the calculated stopping powers are 

in good agreement with those predicted by Joy and 

Luo,[21] and Tung et al.[25] Hence, the modified for-

mula of Love et al. has solved the problems of overes-

timating energy loss of the penetrating electrons at 

low energies by Love et al.’s equation while retaining 

the desirable characteristic of being able to derive the 

analytical expression of the Bethe range by integra-

tion. 

It should be pointed out that the above formulas 

for calculating stopping power of the penetrating elec-

trons in matter have different characteristics and thus 

are applicable in different cases. 

2.2 Linear dielectric response theory 

The inelastic interactions of the incident electron 

with a target material can be divided into two parts, i.e. 

the interaction of the incident electron with the va-

lence electrons of a target atom and that between the 

incident electron and the core electrons. Therefore, the 
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total stopping power is the sum of the contributions 

from the two parts and can be expressed as 

 

(dE/dS)t = (dE/dS)v + (dE/dS)c     (21) 

 

where the subscripts indicate the total, valence and 

core parts, respectively. 

Based on the electromagnetic principle and free 

electron gas model, the dielectric response theory to 

characterize the inelastic interaction of the penetrating 

electrons with solid has been well developed since 

1950’s and the general descriptions of this theory have 

been presented by several well-known authors, e.g. 

Lindhard,[31] Ritchie[32] and Pines.[33] Nowadays, it is 

considered that the dielectric response theory is per-

haps the best approach to characterize the inelastic 

scattering of the incident electron in solids. According 

to the dielectric response theory, a basic expression, 

i.e. the electron inelastic differential cross section can 

be given as 

 

(22) 

 

where E is the kinetic energy of the incident electron, 

a0 is the Bohr radius, ħ and ħq are the energy loss 

and the momentum transfer, respectively, from the 

incident electron into a medium described by the die-

lectric response function (q,). Over the allowed 

values of ħ and ħq, the stopping power correspond-

ing to the interactions between the incident electron 

and the valence-electron system can be obtained from 

the relevant integrations of Eq.(22), i.e. 

 

 

 

(23) 

where q±=                         . This ex-

pression is due to the conservation of energy and mo-

mentum, and is based on the assumption that the en-

ergy-momentum relation for a non-relativistic electron 

in the solid does not differ appreciably from that of a 

free electron in vacuum. The quantity Im[-1/ (q,)] is 

commonly referred to as the energy loss function. 

From Eq.(23), in the frame of the dielectric re-

sponse theory, it is clear that the key problem for cal-

culating the stopping power is to derive the energy 

loss function Im[-1/ (q,)]. However, the well-known 

Lindhard dielectric function is only applicable for 

limited materials, so called nearlyfreeelectron ma-

terials. Therefore, many efforts have been devoted to 

the calculations of the energy loss function. A main 

method for obtaining the energy loss function is to use 

the optical energy loss function (OELF) Im[-1/ (0,)] 

and to extend it into the area with q0 by introducing 

a suitable dispersion relation. The optical energy loss 

function can be calculated from experimental optical 

data, the refractive index and the extinction coeffi-

cients, which are available for a number of materi-

als.[34,35] A practical approach to derive the energy loss 

function, Im[-1/ (q,)], is to expand it or the imagi-

nary part of the dielectric function,  (0,), as a sum 

of Drude-type functions, which has been first pro-

posed by Ritchie and Howie.[36] Each term in the sum 

of Drude-type functions has three adjustable parame-

ters. All the parameters in the sum of Drude-type 

functions will be determined by fitting the expression 

of the sum of Drude-type functions, in the limit q0, 

to experimental OELF. 

Kwei et al.[37,38] expressed the imaginary part, 

2(0,), of the dielectric function,  (0,), as a sum of 

Drude-type functions, namely 

 

(24) 

 

The parameters Aj,  j and  j are determined by 

fitting 2 in the form of Eq.(24) to the values comput-

ed from experimental optical data in the range of ħ 

less than several tens of eV. 

The real part, 1(0,), of the dielectric function is 

further derived from the KramersKronig relation. 

The result is 

 

(25) 

 

Consequently, the optical energy loss function can be 

calculated by 

 

(26) 

 

Finally, by introducing a suitable dispersion relation 
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tion, Im[-1/ (q,)], is obtained. A commonly used 

dispersion relation is 

 

 q =  p + ħq2/2m            (27) 

 

where p is the plasmon frequency of the free-electron 

gas and m is the mass of electron. Kwei et al. applied 

the method described above to the calculation of stop-

ping powers for semiconducting III-V compounds and 

other several solids. Emfietzoglou and Moscovitch[39] 

have also used similar approach to calculate the elec-

tron stopping powers for liquid water. 

To obtain the energy loss function by making use 

of the Drude-type function, another method is to di-

rectly expand Im[-1/ (q,)] as a sum of the 

Drude-type function, i.e. 

 

 

 

(28) 

where Ej (q) is the dispersion relation. Similarly, the 

parameters Aj,  j and Ej (0) are determined by fitting 

the expression of the sum of Drude-type functions, in 

the limit q0, to experimental optical energy loss 

function. This approach has been extensively used by 

many workers.[4042] 

Using the methods described above, the stopping 

powers, (dE/dS)v, corresponding to the interaction of 

the incident electron with the valence electrons system 

of the condensed matter, can be calculated. For 

(dE/dS)c, the contributions from core electrons, are 

commonly calculated according to Gryzinski.[43] Kwei 

and Tung[37] have also applied the local plasma ap-

proximation for the evaluation of (dE/dS)c. One 

characteristic of the above methods for deriving 

Im[-1/ (q,)] is to use experimental optical data. In 

addition, the numerical fitting process for the deter-

mination of all parameters in the sum of Drude type 

function is tedious. Particularly, most of the transitions 

for noble metals and some alkali halides present a 

very complex structure in Im[-1/ ()], and thus many 

terms of Drude type function are required. As an ex-

ample, the calculation of the optical energy loss func-

tion of KCl is presented in Fig.1. In this calculation, 

the optical energy loss function of KCl is expanded as 

a sum of the ten terms of Drude type function and the 

corresponding parameters are taken from Boutboul et 

al.’s calculation.[41] The experimental optical energy 

loss function is also plotted in this figure for compar-

ison. From this figure, it is shown clearly that the op-

tical energy loss function of KCl presents a complex 

structure. 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.1  Experimental optical energy loss function of KCl (solid 
line) and that obtained by using fitted expansion formula of 
Eq.(28) (dashed line) versus the photon energy. 

A method referred to as model insulator theory[44] 

has been used to calculate the Im[-1/ (q,)] from va-

lence electrons’ response by Painter et al. and Ashley 

et al.[4547] In this method, the imaginary part, 2(q,), 

of the dielectric response function for the valence 

electrons is described with the model insulator theory 

and its adjustable parameters are fixed by fitting the 

theoretical expression of the imaginary part of the di-

electric response function in the optical limit (q0) to 

experimental 2() spectrum. The real part, 1(q,), of 

the dielectric response function is derived from the 

Kramers-Kronig relation. Also, the ionization contri-

bution from inner shell electrons is calculated with the 

generalized oscillator strengths. This method has been 

applied to calculate the stopping powers for organic 

compounds and water with considerable success. 

As mentioned above, the stopping powers are di-

vided into two parts, i.e. contributions of the valence 

electrons and inner shell electrons, respectively. The 

calculation of the energy loss function from the va-

lence electrons’ response results in a tedious numeri-

cal fitting process. Another method is the so-called 

electron gas statistical model, pioneered by Lindhard 

and co-workers,[48] which has been used to the calcu-

lation of stopping power for the charged-particle by 
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many authors.[36] In this method, a basic assumption is 

that the stopping medium is characterized by a 

space-varying electron density, n(r), and the contribu-

tion of the electrons in a small volume element d3r at r 

to the stopping power or the inverse mean free path is 

the same as that of the same number of free electrons 

in an electron gas having the same density. So, the 

total stopping power or inverse mean free path is 

computed by averaging these functions of the electron 

density n(r) over the volume of the solids. Based on 

this assumption, Tung et al.[48] presented the following 

approach for the inverse mean free path (E) and 

the electron stopping power S(E) resulting from the 

interactions of the incident electron with the total 

electron system of the solid : 

 

(29) 

 

where the integration is over the volume of the Wig-

ner-Seitz cell for a given solid, n(r) is considered in 

spherical symmetry, and 

 

 

 

(30) 

 

 

 

(31) 

where EF is the Fermi energy, which is a function of 

n(r), k±=                      . In this scheme 

the spherically symmetric electron density distribution 

n(r) was calculated by using a relativistic Har-

tree-Fock method. Based on the model described with 

Eqs.(29), (30) and (31), Tung et al. calculated the 

stopping powers for Al, Si, Cu, Ni, Ag and Au, and the 

calculated stopping powers are in good agreement 

with experimental results. In Tung et al.’s method, it is 

clearly shown that all electrons in solid are considered 

as one group but with a density varying from point to 

point in solid. There is, therefore, no distinction be-

tween valence and innershell electrons. Thus, Tung 

et al.’s method provides a systematic evaluation for 

the total stopping powers of the electron inelastic 

scattering in solid. 

Based on the idea of statistical approximation 

used by Tung et al.,[48] Penn[49] calculated the energy 

loss function Im[-1/ (q,)] and derived Im[-1/ (q,)] 

by averaging the energy loss function over a Wig-

ner-Seitz cell, i.e. 

 

 

(32) 

where L(q,; p
sr  is the Lindhard dielectric function, 

the region of integration is a Wigner-Seitz cell of 

volume , and 

 

(33) 

 

Here, np(r) is a pseudo-charge-density chosen to en-

sure that 

 

(34) 

 

By further operating, Penn expressed the energy loss 

function as 

 

 

(35) 

where 

 

(36) 

 

Penn’s method shows that the energy loss func-

tion can be obtained from the optical dielectric re-

sponse function  (), provided a suitable dispersion 

relation is introduced. This method doesn’t require a 

tedious numerical fitting process for deriving the en-

ergy loss function but directly uses the experimental 

optical data, and thus is convenient for use. Making 

use of the available experimental optical data and ap-

plying Penn’s approach, Tanuma et al.[5053] calculated 

electron mean free paths for a large number of ele-

ments and compounds. Also, starting with the doubly 

differential cross section given by Eq.(22) and using 

Penn’s method, Ding and Shimizu[54,55] derived an 

expression to calculate the excitation function and 

stopping power of electrons in metal solids and ap-

plied them to Monte Carlo simulations for electron 

probe microanalysis. Öztürk and Williamson Jr.[56] 

used Ding and Shimizu’s method for the Monte Carlo 

simulations of ~ keV electron transport in solid media. 
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Constructing the Bethe surface by choosing a 

oscillator representation of a free-electron gas, 

Ashley[57] suggested a method for calculating the en-

ergy loss function from the optical data. This method 

is similar to Penn’s method and directly uses the ex-

perimental optical data, thus referred to as optical data 

model. Ashley evaluated the stopping powers for 

many elements and compounds by using the optical 

data model. Furthermore, an important contribution of 

Ashley is to introduce, for the first time, the correction 

approach for taking into account the exchange effect 

between the incident electron and the electrons in the 

medium in an empirical way based on the 

non-relativistic Moller formula. By including the ex-

change effect correction, an obvious result is that the 

calculated stopping powers are substantially different 

from those of ignoring the exchange correction at low 

energies. Also, by means of a modified Born-Ochkur 

approximation,[58] another method for incorporating 

the exchange correction into the electron inelastic 

scattering has been used.[59] However, the differences 

between the calculated results based on these two 

kinds of exchange correction methods need to be fur-

ther compared. 

3 Stopping power data tables and applica-
tion aspects 

In this section, based on the dielectric response 

theory and Penn’s statistical model, we have presented 

a method[60] for the calculation of stopping powers of 

electrons penetrating into a series of organic com-

pounds in the energy range of E ≤10 keV. We have 

incorporated the exchange effect corrections of 

Born-Ochkur into the calculations. Also, we have 

given an empirical method to obtain optical energy 

loss functions for a large number of organic com-

pounds, for which optical data are not available. Fur-

ther, the stopping power data tables for a group of 

important polymers and a group of important bioor-

ganic compounds are presented and the applications of 

stopping power data are briefly discussed. 

Based on the Penn’s method, inserting Eq.(36) 

into Eq.(35), one finds that 

 

(37) 

 

A singlepole approximation has also been ap-

plied in the work of Ritchie.[36] In a singlepole ap-

proximation, the Lindhard’s dielectric function can be 

expressed as 

 

(38) 

 

where  q=  q(q) is the dispersion relation. 

Eq.(37) can be, therefore, written in the form 

 

 

 

(39) 

As adopted by many authors,[36,37,42] we have 

used the simple dispersion relation given by Eq.(27), 

which depicts the reasonable behavior required for 

two extremes, i.e. q  p when q 0 and q  

ħq2/2m as q  ∞ corresponding to the Bethe ridge. 

Incorporating Eq.(39) with the dispersion relation 

of Eq.(27) into Eq.(22) and applying Born-Ochkur’s 

exchange correction method,[58] the inelastic differen-

tial cross section can be written as 
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where Cex is a correction factor and is expressed as 

  

    (41) 

 

where Q = ħ2q2/2m. 

With Eq.(40) and over the allowed integration 

region, the SPs can be calculated by 
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where v() is given as 
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and  = ħ /E, s =         . It is obvious that the 

calculations of the SPs based on Eq.(42) involve only 

a single numerical quadrature, thus requiring less 

computational work. 

Recently, much interest has been focused on the 

calculations of stopping powers for electrons in or-

ganic compounds, especially in bioorganic compounds, 

because these calculations are of obvious importance 

for the radiation biology, the analysis of polymers and 

the electron beam lithography. On the other hand, the 

methods described above need to use the experimental 

optical data, based on the dielectric response theory. 

However, to our knowledge, there are only 14 organic 

compounds and water, for which the experimental 

optical data are available. These 14 organic com-

pounds were listed in the work of Tanuma et al.[53] 

Based on the structure features of Im[-1/ ()] of the 

organic compounds with available optical data and by 

means of the approach of Ritchie and Howie,[36] we 

proposed an empirical approach[60] to obtain the OELF 

for organic compounds in the energy range from 0 to 

infinity. This approach is briefly introduced as fol-

lows. 

We express the OELF in the form: 

 

(44) 

 

 

where f1(ħ; a, b, c) is a single Drude-type function 

and is given by 

 

(45) 

 

the parameters b and c are calculated with the follow-

ing relations: 

 

b = 19.927 + 0.9807            (46) 

 

c = 13.741 + 0.3215            (47) 

 

where    is the mean atomic number of the molecule 

(or monomeric unit) in each material, f3(ħ) is ob-

tained numerically by use of atomic photoabsorption 

data of Henke et al.,[61] and f2(ħ; y0(a), y1, y2 ) is a 

parabolic interpolation function, with adjustable pa-

rameters y0(a), y1 and y2, to link f1 and f3 smoothly. In 

f2(ħ; y0(a), y1, y2 ), the parameters y1 and y2 are given 

by f3 at energies ħω = 50 eV and 60 eV, respectively, 

and the parameter y0(a) is the value of f1 at the energy 

ħω = 40 eV. Finally the parameter a and thus y0(a) are 

determined by the following f-sum rule, which the 

Im[-1/ ()] given above must obey, in accordance 

with the dielectric response theory: 

 

(48) 

 

where p = (4ne2/m)1/2, n = Nav /M is the molecular 

density, Nav is Avogadro’s number,  is the bulk den-

sity of the material and M is the molecule weight, Z is 

the total numbers of electrons per molecule, and m is 

the mass of electron. The Im[1/ ()] determined in 

this way not only has the structural feature of the 

OELF for organic compounds, but also satisfies the 

f-sum rule of the dielectric response theory, which is a 

standard check for the reliability of the OELF given. 

Using our approach given by Eq.(44), the calcu-

lated values of Im[-1/ ()] for the organic compounds 

listed in the work of Tanuma et al.[53] have been com-

pared with the corresponding experimental data for 

photon energies lower than several tens of eV. Rea-

sonable agreement between our theoretical values and 

the experimental data is obtained. Applying our 

methods of calculating the SPs by Eq.(42) and the 

evaluation for OELF by Eq.(44), we have calculated 

the SPs for the organic compounds mentioned above 

and compared them with other theoretical results.[42,62] 

The comparisons show that our calculated SPs are in 

good agreement with the other theoretical results. In 

addition, our calculated SP values also converge to 

that predicted by Bethe-Bloch theory at high energy. 

These tests show the reliability of our methods. 

The polymers (or macromolecules) are a large 

group of important materials having a great deal of 

applications. Using our method, we have performed 

the systematic calculations of SPs in the energy range 

of E ≤10 keV for alanine and 9 polymers: polypro-

pylene, polycarbonate, mylar, polyvinylalcohol, poly-
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polyvinylacetate and bakelite, for which experimental 

optical data have not ever been reported. These ten 

organic compounds and their composition, mass den-

sity,  (in g/cm3 ), M and Z  are presented in Table 1. 

The calculated results of SPs are presented at selected 

energies in Table 2. In order to make these tables 

compact and clear, we use the code numbers, from 1 

to 10, to represent the 10 compounds, respectively.   

Table 1  The composition and parameters for 9 kinds of polymers and alanine 

Material Composition 
 (g/cm3) M Z  

No. Name C H N O 

1 polypropylene 3 6   0.9 42 2.667 

2 polycarbonate 16 14  3 1.2 254 4.06 

3 mylar 10 8  4 1.4 192 4.545 

4 polyvinylalcohol 2 4  1 1.3 44.05 3.428 

5 polyoxymethylene 1 2  1 1.425 30.03 4 

6 polyacrylonitrile 3 3 1  1.17 53.06 4 

7 polyvinylpyrrolidone 6 9 1 1 1.25 111.14 3.529 

8 polyvinylacetate 4 6  2 1.19 86.09 3.833 

9 alanine 3 7 1 2 1.42 89.10 3.692 

10 bakelite 44 36  6 1.4 660.7 4.047 

Table 2  Stopping powers (in eV/Å) with BornOchkur exchange correction included for 9 kinds of polymers and alanine 

E (eV) Material No. 

1 2 3 4 5 6 7 8 9 10 

20 0.1636 0.1409 0.1414 0.1707 0.1540 0.1427 0.1668 0.1411 0.1709 0.1652 

30 0.4426 0.3750 0.3742 0.4577 0.4100 0.3799 0.4468 0.3765 0.4567 0.4398 

40 0.9944 0.8372 0.8323 1.0259 0.9160 0.8486 1.0010 0.8419 1.0223 0.9820 

50 1.7926 1.5784 1.5871 1.8994 1.7241 1.5974 1.8591 1.5776 1.9079 1.8507 

60 2.4851 2.3185 2.3786 2.7176 2.5263 2.3405 2.6711 2.2956 2.7599 2.7169 

80 3.2008 3.1619 3.3141 3.6084 3.4363 3.1837 3.5615 3.1003 3.7051 3.7030 

100 3.4117 3.4568 3.6629 3.9124 3.7729 3.4746 3.8604 3.3841 4.0408 4.0472 

150 3.2719 3.4410 3.7233 3.9010 3.8583 3.4414 3.8146 3.3970 4.0777 4.0243 

200 2.9698 3.1848 3.4859 3.6226 3.6338 3.1748 3.5199 3.1646 3.8113 3.7206 

300 2.4530 2.6850 2.9745 3.0678 3.1231 2.6660 2.9586 2.6886 3.2487 3.1321 

400 2.0862 2.3085 2.5736 2.6443 2.7128 2.2869 2.5396 2.3215 2.8095 2.6905 

500 1.8198 2.0273 2.2690 2.3260 2.3977 2.0054 2.2281 2.0443 2.4763 2.3615 

600 1.6193 1.8126 2.0339 2.0815 2.1523 1.7910 1.9905 1.8307 2.2187 2.1106 

800 1.3544 1.5264 1.7148 1.7464 1.8091 1.5034 1.6697 1.5386 1.8600 1.7781 

1000 1.1762 1.3316 1.4958 1.5171 1.5718 1.3105 1.4527 1.3383 1.6150 1.5522 

2000 0.7360 0.8464 0.9536 0.9571 0.9961 0.8327 0.9185 0.8476 1.0213 0.9872 

3000 0.5480 0.6354 0.7177 0.7173 0.7491 0.6245 0.6880 0.6363 0.7665 0.7410 

4000 0.4412 0.5140 0.5815 0.5798 0.6069 0.5049 0.5558 0.5149 0.6202 0.5993 

5000 0.3716 0.4343 0.4918 0.4896 0.5132 0.4264 0.4692 0.4351 0.5240 0.5063 

6000 0.3222 0.3775 0.4279 0.4255 0.4464 0.3705 0.4076 0.3782 0.4555 0.4401 

8000 0.2565 0. 3015 0.3421 0.3396 0.3569 0.2958 0.3253 0.3021 0.3639 0.3514 

10000 0.2144 0.2525 0.2867 0.2844 0.2991 0.2477 0.2723 0.2531 0.3048 0.2943 
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Also, we have calculated the SPs for 10 kinds of 

bioorganic compounds: DNA, Adenine (C5H5N5), 

Guanine (C5H5N5O), Thymine (C5H6N2O2), Cytosine 

(C4H5N3O), Uracil (C4H4N2O2), Oleic acid 

(C18H34O2), Linoleic acid (C18H32O2), Arachidonic 

acid (C20H32O2) and Cellulose (C5H10O5). According 

to the compositions of the sodium salt of calf thymus 

DNA,[63] we have formed the equivalent molecules 

(or monomeric units) of DNA, which consists of 

58% AT (AdenineThymine base pair) and 42% 

GC (GuanineCytosine base pair). The parameters 

of these 10 bioorganic compounds are listed in Table 

3. Table 4 gives the corresponding SP values calcu-

lated by our method with BornOchkur exchange 

correction included for electron energies from 20 eV 

to 10000 eV. Similarly, we use the code numbers, 

from 11 to 20, to represent these 10 bioorganic com-

pounds, respectively.  

The applications of electron stopping powers can 

be roughly divided into two aspects. One is the direct 

use in the technologies relating to electron beam. In 

SEM, the stopping power is used to evaluate the range 

of electron in solid and to calculate the yields of the 

secondary electrons.[64] In quantitative electron-probe 

microanalysis, the stopping power is applied to calcu-

late the stopping power factor,[16] which is one of the 

quantities to determine the measured X-ray intensities 

from the specimen and the standard sample. In addi-

tion, the stopping power is often used for estimation 

of dose or other related quantities in radiation therapy. 

As rapid development of computer technique and 

with increasing computational ability to resolve the 

complicated physical problems, Monte Carlo simula-

tion has become a dominant method for the study of 

electron transport in matter. The electron stopping 

power is the basic input data for Monte Carlo simula-

tion of energetic electron transport in matter. A typical 

example is the single scattering model[65] in Monte 

Carlo simulation, which is widely applied in SEM, 

SAMP and EBL. In this model, the energy loss of the 

penetrating electrons in the inelastic scattering process 

is calculated by using stopping power, based on the 

continuous slowing down approximation. In addition, 

many quantities relating to electron scattering process 
are relevant to stopping power data. For example, the  

spatial distribution of energy dissipation is the most 

important quantity for electron beam lithography and 

it determines the ultimate resolution of mi-

cro-fabrication by EBL. However, the energy dissipa-

tion in the resist film is closely related to the electron 

stopping power. Also, in the study of radiation in-

duced DNA damage, the stopping power is used to 

calculate the energy dissipation in DNA.[66] These 

dissipations of electron energies determine the num-

bers of DNA strand breakage. 

The data of SPs given in Tables 2 and 4 can be 

used in the electron microscopy analysis for Monte 

Carlo simulations of energetic electrons transport and 

in the studies of various radiation effects for these 

important materials. 

4 Summary 

The interaction of energetic electrons with mate-

rials is the physical foundation for many fields of 

modern science and technology, such as scanning 

electron microscopy (SEM), electron probe microa-

nalysis (EPMA), electron beam lithography (EBL), 

radiation biology and radiation therapy. Electron stop-

ping power is a basic physical quantity for character-

izing the inelastic interaction of electron with materi-

als and is essentially important for better understand-

ing of the basic physical process of electron-material 

interaction. Meanwhile, the electron stopping powers  

Table 3  The material parameters for 10 kinds of bioorganic 
compounds  

Compound 
 (g/cm3) M Z  

No. Name 

11 DNA 1.35 662 5.185 

12 Adenine 1.35 135.14 4.667 

13 Guanine 1.58 151.14 4.875 

14 Thymine 1.48 126.12 4.4 

15 Cytosine 1.3 111.11 4.462 

16 Uracil 1.32 112.09 4.833 

17 Oleic acid 0.89 282.45 2.926 

18 Linoleic acid 0.9 280.44 3 

19 Arachidonic acid 0.92 304.46 3.111 

20 Cellulose 1.35 162.14 4.095 
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Table 4  SPs (in eV/Å) with Born–Ochkur correction included for 10 kinds of bioorganic compounds 

E (eV) Compound No. 

11 12 13 14 15 16 17 18 19 20 

20 0.0811 0.1148 0.1911 0.1540 0.1366 0.1250 0.1454 0.1436 0.1421 0.1450 

30 0.2742 0.3175 0.3814 0.4082 0.3619 0.3299 0.3922 0.3870 0.3825 0.3857 

40 0.7226 0.7340 0.7559 0.9091 0.8055 0.7319 0.8808 0.8690 0.8585 0.8610 

50 1.3690 1.4743 1.4680 1.7280 1.5331 1.4037 1.6034 1.5860 1.5730 1.6247 

60 1.9928 2.3140 2.2976 2.5742 2.2898 2.1285 2.2466 2.2292 2.2210 2.3900 

80 2.8274 3.1933 3.3405 3.5634 3.1784 3.0047 2.9232 2.9090 2.9112 3.2643 

100 3.2240 3.5066 3.7858 3.9312 3.5067 3.3411 3.1318 3.1204 3.1282 3.5871 

150 3.3684 3.5268 3.9334 4.0002 3.5545 3.4299 3.0344 3.0278 3.0403 3.6591 

200 3.1922 3.2876 3.7144 3.7483 3.3225 3.2279 2.7713 2.7671 2.7805 3.4402 

300 2.7613 2.7919 3.1917 3.2005 2.8293 2.7688 2.3050 2.3032 2.3157 2.9511 

400 2.4139 2.4091 2.7697 2.7697 2.4448 2.4018 1.9679 1.9670 1.9783 2.5609 

500 2.1458 2.1203 2.4460 2.4422 2.1537 2.1209 1.7207 1.7204 1.7305 2.2620 

600 1.9353 1.8981 2.1945 2.1889 1.9290 1.9028 1.5337 1.5337 1.5430 2.0298 

800 1.6371 1.5920 1.8443 1.8392 1.6180 1.5997 1.2843 1.2848 1.2936 1.7069 

1000 1.4300 1.3877 1.6083 1.6014 1.4082 1.3931 1.1157 1.1167 1.1250 1.4840 

2000 0.9156 0.8879 1.0312 1.0196 0.8968 0.8891 0.7003 0.7017 0.7080 0.9414 

3000 0.6905 0.6684 0.7776 0.7669 0.6743 0.6697 0.5226 0.5238 0.5289 0.7081 

4000 0.5604 0.5416 0.6307 0.6212 0.5461 0.5429 0.4213 0.4224 0.4267 0.5736 

5000 0.4746 0.4581 0.5338 0.5253 0.4617 0.4594 0.3552 0.3561 0.3598 0.4851 

6000 0.4133 0.3985 0.4646 0.4569 0.4015 0.3997 0.3082 0.3091 0.3123 0.4220 

8000 0.3310 0.3186 0.3717 0.3653 0.3209 0.3197 0.2456 0.2463 0.2490 0.3373 

10000 0.2778 0.2670 0.3117 0.3061 0.2689 0.2680 0.2054 0.2060 0.2082 0.2827 

 

are also basic input data in Monte Carlo simulation of 

energetic electrons transport in materials. In this re-

view article, the developments of two theoretical sys-

tems, i.e. the non-relativistic Bethe theory and that 

based on linear dielectric response theory, for calcu-

lating stopping powers have been outlined. The stop-

ping power data tables obtained by our group for a set 

of polymers and bioorganic compounds have been 

presented. These data can be used in the studies of 

various radiation effects for these materials. 
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