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Abstract  The self-absorption of γ-ray emitted from cylindrical fissile materials, such as 235U and 239Pu, does not 

possess spherical symmetry. The analytical formulae of self-absorption for γ-ray throughout the cylinder have been 

obtained. The intensity of γ-ray is a function of γ-ray outgoing directions and cylindrical configurations, accordingly 

one can acquire the information about geometrical configuration of cylindrical fissile materials through multi-location 

measurements. Further more, the method is given in this article. The result can be applied to the fissile material safe-

guard, such as nuclear monitoring and verifying. 
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1 Introduction 

So far a great amount of nuclear fissile materials, 

uranium (235U) and plutonium (239Pu) have been pro-

duced and stockpiled in the world. The risk of prolif-

eration of fissile materials has been increasing. Espe-

cially smuggling and stealthy carrying of these mate-

rials controlled by terrorists have been concerned by 

the international society.[1-5] 

The International Atomic Energy Agency (IAEA) 

has appealed to strengthen and support the interna-

tional supervisory system and the R & D of related 

supervising techniques.[6] The isotopic composition 

(uranium or plutonium) of fissile materials can be eas-

ily obtained from the spectra of γ-ray emitted from the 

materials. A typical γ spectrum of enriched uranium is 

shown in Fig.1.[7] It is still unknown whether the ge-

ometrical information on nuclear device including size, 

geometric configuration and the shield thickness of 

the outside packing can be obtained according to the 

intensity ratio caused by the variety of absorption co-

efficient of γ-ray with different energy in nuclear ma-

terial along with the variety of emitting direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1  The γ-spectrum of highly enriched uranium. 
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In 1989, teams of sci-

entists from Natural Resource Defence Council of the 

United States and Academy of Science of the Soviet 

Union measured the nuclear warhead of an SS-N-12 

cruise missile in the cruiser Slava of the Black Sea 

marine. The results of measurement and analysis were 

published in Science.[8] Their conclusion was whether 

the warhead consisted of uranium or plutonium was 

decided by its γ-ray spectrum. However, the meas-

urements had not given the design information re-

ferred to geometrical configuration because of the 

restrictive location and time of measurements. As a 

matter of fact, the warhead was supposed to be spher-

ical or with a spherical surface in the calculation of 

that article, in other words, the warhead was supposed 

to have spherical symmetry in geometry. 

After 1997, Tian et al.[9] brought forward that the 

geometric information of nuclear material can be re-

solved according to self-absorption of nuclear material 

in different directions. Tian et al. calculated exactly 

the self-absorption coefficient of the spherical material 

in their article. As for cylindrical material, when γ-ray 

was detected along the axis direction, they made an 

approximate calculation. 

In this article the research extent will be widened. 

The self-absorption correction will be obtained exact-

ly when γ-ray was emitted throughout the cylinder. 

Further, we resolve the geometric configuration of the 

nuclear device through the detection of γ-ray in any 

direction. 

2 Space partition outside the cylindrical 
nuclear material 

The space outside the cylinder is divided into 

three parts: Part I the space in the cylindrical side face 

except the cylinder; Part II the space between the two 

basal faces of the cylinder except the cylinder; and 

Part III the space outside the cylinder except Part I 

and Part II. See Fig.2. 

3 Expression of the self-absorption correc-
tion coefficient 

Here expressions of self-absorption correction 

coefficient G will be given, what’s more, the discus-

sion in the interfaces will be done. 

 

 

 

 

 

 

 

 

 

 

Fig.2  Cylindrical nuclear material’s space partition. 

3.1 Geometry of the γ-ray detection in Part I 

We confine the γ-ray detection deviating from the 

cylindrical axis in the region where r2≤R2 and z≥H/2 

or z≤-H/2 in the cylindrical coordinates. We take po-

lar coordinates of D as (r0, θ0, z0), polar coordinates of 

S as (r, θ, z) and the cylindrical radius as R, as shown 

in Fig.3. 

 

 

 

 

 

 

 

 

 

 

Fig.3  Detection of γ-ray in Part I of the cylinder. 

The radial distance t in Part I is given by: 

( , , )t r z ≡
CB

SA SD
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2/  

2 2 2
0 0 0 0 0( cos cos ) ( sin sin ) ( )r r r r z z       
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Considering the symmetry, we take θ0 = 0, Eq.(1) 

will become: 

( , , )t r z = 

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The self-absorption coefficient G simply be-
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comes: 
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/ 2 0 0

d d exp[ ( ) ( , , )]d
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Let r0=0, Eq.(2) will become: 
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

zz

zH

0

2/ 2 2

0( )r z z    (2’) 

the self– absorption coefficient G is the same as Eq.(3). 

That is the case that the detector is placed in the axis 

of the cylinder as in Ref.[10]. 

3.2 Geometry of the γ-ray detection in Part II 

In Fig.4, adopting the cylindrical coordinates, the 

detector is placed at the point D in Part II. Considering 

symmetry, polar coordinates of point D are (r0, 0, z0). 

S (r, θ, z) is a point in the bulk of the cylinder. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Detection of γ-ray in Part II of the cylinder. 

From Fig.4 one can easily acquire the following 

relations: 
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The absorption distance SF can be expressed by: 
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Let z0=0, Eq.(4) will become: 

2
2 2

1
( , , ) cos

2 cos
t r z Lr

r Lr L
r 

 
   

2 2 2 2 2 2 2 2 2cos 2 cos ( )L r R Lr L R r R L      
 

2 2 2 2 cosL z r Lr               (4’) 

where L=r0, the radius of the cylinder. The 

self-absorption coefficient G is the same as Eq.(5). 

That is the case that the detector is placed on the plane 

XOY of the cylinder as in Ref.[10]. 

3.3 Geometry of the γ-ray detection in space of 

Part III 

3.3.1  Plane Equation 

A plane that goes through the line DE and is par-

allel to the axis OY is named after plane β. Since point 

A’s and point D’s coordinates are respectively 

A(R,0,H/2) and D(r0, θ0, z0), the plane equation is im-

mediately expressed as follows: 
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Using the equation, the point E’s coordinate is 

easily written as 

0
0 0

0

/ 2
, 0, ( )

z H
E R z R r

r R

 
    

 

3.3.2  Calculation of self-absorption distance 

When the point in the bulk of the cylinder is 

above the plane β, the calculation of self-absorption 

distance is analogous to the case of Part I, and their 

expressions are analogous too, seeing Fig.5. 
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When the point in the bulk of the cylinder is un-
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der the plane β, the calcula-

tion of self-absorption distance is analogous to the 

case of Part II, and their expressions are analogous. 

 

 

 

 

 

 

 

 

 

 

Fig.5  Calculation of the radiant distance in Part III (a). 

 

 

 

 

 

 

 

 

 

Fig.6  Calculation of the radiant distance in Part III (b). 

From Fig.6 SD
SA
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SF   are gained，where 
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3.3.3  Expressions of 

self-absorption coefficient G in Part III 

In order to give the expressions of coefficient G 

in part III, two situations are considered. The first case 

is shown in Fig.7. The plane β is above the diagonal 

plane. 

 

 

 

 

 

 

 

 

Fig.7  Expressions of coefficient G in Part III (a). 

The whole cylinder is divided into five parts for 

the explicit expressions of coefficient G. The plane β 

and the side face intersect at point E through which a 

plane π goes. Under the plane π is part (5). The area 

above the part (5) is divided into two parts by the 

plane β. The plane β and the axis OZ intersect one 

point through which a plane σ goes vertical with the 

axis OZ. The plane σ splits the area above the part (5) 

into the parts (1), (2), (3) and (4). 

Here we write coefficient G expressions of every 

part: 
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, and tu and td are 

given by (7) and (8) respectively. 

The total coefficient G in Part III is the sum of 

the five parts: 
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The other case’s figure is shown below in Fig.8. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8  Expressions of coefficient G in Part III (b). 

The whole cylinder is divided into four parts for 

the explicit expressions of coefficient G. This case is 

apparently easier than the first one. Their area parti-

tions are analogical and so are the expressions. Here 

are the expressions below. 
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In the above four formulae tu, td and x are the 

same as the first case.The total coefficient G is the 

sum of the four parts: 

4
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Besides the above two situations, the third case 

must be considered, seeing Fig.9. However, this situa-

tion is a special one of the second case. Actually as 

long as the second and the fourth terms are omitted 

from the formula (10), that is the coefficient G of this 

case. 

 

 

 

 

 

 

 

 

 

Fig.9  Expressions of coefficient G in Part III (c). 

3.3.4  Boundary discussion 

Here the boundary question is referred to two 

cases: (1) whether the two G expressions are con-

sistent or not when the detector is placed on the diag-

onal plane of the cylinder; and (2) whether the G ex-

pressions between in Part III and in Part I and between 

in Part III and in Part II are consistent or not. 

(1) Detector D is on the diagonal plane of the 
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cylinder. 
In this case point E’s coordinate is (-R, 0, -H/2), 

that is to say, 
0
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Then in the first above case 
5

1
i

i

G G


   will become 

4

1
i

i

G G


  . Using the relationship * the first case and 
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(2) Boundary discussion between Part III and 

Part I, Part III and Part II 

Part III and Part I 

We must use the third case of part III, and com-

pare it with Part I at the boundary. The result in the 

third case of Part III is G=G1+G3, the expressions of 

G1 and G3 are shown as follows: 
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At the boundary r0 =R, so x=R and G3=0 and the 

first term of G1, then G1 becomes 
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This upper formula is the same as the result of 

Part I. 

Part III and Part II 

Here the first case in the part III is 
5
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  , 

at the boundary z0 = H/2, G1=G2=G3=G4=0 because of 

the limits of integration, so G=G5. Using the relation-

ship z0 = H/2 we can obtain 5G G   
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, which is just the result of Part II. 

4 Methods of working out the cylindrical 
configuration by factor G 

The two-location measurements are taken for 

convenient resolutions with higher precisions. The 

relative intensities can be obtained by the measure-

ments of the characteristic γ-ray spectra of different 

locations. I1 and I2 are the intensities detected in the 

axis of the cylinder and on the XOY plane of the cyl-

inder respectively. The distance L is considered much 

larger than the size of the cylinder. The relative inten-

sity of different locations can be expressed by 
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If L1=L2=L, the above formula will become: 
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When the detective distance L >> H and L >> R, 

the relative intensity I2/I1 is sensitive not to R and H of 

the cylindrical configuration but to the relative size 

H/R. Let R equal a special value, here we assume 

R=1.0 cm, then the relationship of H/R- I2/I1 will be 

worked out. That is to say, H/R depends on the relative 

intensity I2/I1. The real value of R is decided by char-

acteristic γ-ray intensity I on the basis of the known 

H/R. 

As a typical case, we assume R=1.0 cm and 

L=150 cm, the uranium’s characteristic γ-ray energy 

E=185.72 keV, the attenuation coefficient[11] μ=31.60 

g•cm-2, the diagram of H/R-I2/I1 will be given numer-

ically in Fig.10, where integral subroutine is pro-

grammed by Monte Carlo. 

By data fitting, the relationship of H/R and I2/I1 is 

given by 

H/R = –0.00916 + 1.58239 I2/I1       (13) 

If L=150 cm, and R=1.0 cm, 1.5 cm, 2.0 cm, the 

diagram of H/R- I2/I1 will be given numerically in 

Fig.11, where integral subroutines are programmed by 

Monte Carlo too. 
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Fig.10  Relationship between H/R and I2/I1 (R=1.0). 

 

 

 

 

 

 

 

 

 

 

Fig.11  Relationship of H/R with I2 / I1. 
● R=1.0 cm, ■ R=1.5 cm,▲ R=2.0 cm. 

When R=1.0 cm, 1.5 cm, 2.0 cm, the points in 

Fig. 11 are along a line, so all the points are linearly 

fitted together. By data fitting, the relationship of H/R 

and I2/I1 is given by 

H/R = -0.00201 + 1.58179 I/I0       (14) 

Fortunately relationship of H/R and I2/I1 is linear 

and even considered direct proportional, where the 

region of H/R is about 0.1 to 6.0. Formulae (13) and 

(14) show that when L >> H and L >> R, I2/I1 is sensi-

tive not to R and H but to the relative size H/R. During 

actual calculation formula (14) is always used in order 

to get more accuracy. 
The values of R and H can also be decided by ei-

ther intensity. If the detection distance is long enough, 

that is to say, L >> H and L >> R, then detected γ in-

tensity 
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L L
        (15) 

In the above formula GV is expressed in analyti-

cal form, (
24

k s

L



 ) is considered a constant. Be-

cause G is a dimensionless constant, the anterior dis-

cussion about G refers to the quantity of unit volume. 

GV is of course the former formulae. When H/R is 

worked out, the relationship of R and I will be given, 

from which R will be decided by the characteristic 

γ-ray intensity. 

As a typical case, not losing generality, let H/R 

equal to 1.0, the relationship of cylindrical radius R 

and intensity I1 detected in the axis is numerically 

given in Fig.12. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12  Relationship of R with I1. 

By data fitting, the relationship of R and I1 will 

be given by 

13.16898 ( 0.00081) 0.0024R I       (16) 

In the above formula we have taken (
24π

k s

L


 ) 

as a unit of the γ-intensity, and centimeter as the unit 

of radius. When I1 is known by measurement, R can 

be resolved by the above formula. 

5 Summary 

Fissile material can absorb γ- ray emitted from 

itself. The self-absorption correction coefficients 

throughout a cylinder are given. Multi-location meas-

urements are able to solve the configuration of the 
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cylinder. As a simplest case, 

two measurements are made in the axis and on the 

plane XOY of the cylinder. The γ intensity I1 and I2 is 

respectively given from the γ spectra of the twice 

measurements. The ratio of height to radius, H/R, can 

be decided by γ intensity radio I2/I1 through formula 

(14). When H/R is known, the absolute value of radius 

R can be derived from formula (16). In this paper we 

take γ intensity I1 in the axis direction of the cylinder 

as I and obtain the numerical result about the relation 

between R and I as shown in formula (16). Accord-

ingly H can be certainly decided by H/R. 
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