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1 Introduction 

Channeling has found various applications in 

solid state physics (impurity localization or ion im-

plantation, in crystals) and in high-energy particle 

physics (deflection of proton beams by bent crystals, 

measurement of the magnetic moments of short-living 

particles, etc.). Channeled electrons or positrons emit 

X- and gamma-rays with a much larger total intensity 

than bremsstrahlung at random orientation. This is 

used as a source of high-energy photons for particle 

physics or to enhance the efficiency of positron 

sources. The other interesting kinds of radiations 

emitted by charged particles in crystals are parametric 

X-rays (PXR), which is due to the diffraction of the 

electromagnetic field of a charged particle, and co-

herent bremsstrahlung. Their useful quasi-monochro- 

matic spectra and linear polarizations come from in-

terferences between the periodically spaced atomic 

rows or planes. 

Fullerenes and nanotubes, recently discovered, 

are the building blocks of a new class of ordered ma-

terials.[1,2] Spherical fullerene C60 molecules can as-

semble in fcc crystals called fullerites and single-wall 

nanotubes can gather in ropes whose cross section 

makes an hexagonal lattice. These structures differ 

from ordinary crystals in many points. In particular, 

they have spatial periods of the order of one nanome-

ter, which is much larger than in ordinary crystals. In 

addition, they are very inhomogeneous in density, 

being made of hollow “cages” surrounded by a dense 

net of carbon atoms. In this report we discuss the pe-

culiarities that the above mentioned phenomena may 

have in fullerites and nanotube ropes. 

2 Geometrical structure of a nanotube 

A carbon nanotube can be regarded as one gigan-

tic carbon molecule (fullerene) which is obtained by 

folding graphite planes into a cylinder whose diameter 

is measured in nanometers and whose length can 

reach macroscopic dimensions.[2] This linear structure 

determines the extremely high mechanical strength of 

nanotubes[3] whereas their electrical conductivity de-

pends strongly on the diameter and the helicity which 

is the angle between the most highly packed chains of 

atoms and the axis of the cylinder.[4] There exist 

nanotubes whose walls contain a single layer of atoms 

(single-wall nanotubes, or SWNT)[5] and nanotubes 

with walls consisting of several concentric or on-

ion-like layers (multi-wall nanotubes, or MWNT).[6] A 

remarkable feature of some single-layer nanotubes is 

their capability , as they grow from a plasma, to unite 

into a “rope” whose transverse cross section is a 

two-dimensional hexagonal superlattice.[7] Since the 
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discovery of nanotubes in 1991 by Iijima,[6] a large 

number of papers have appeared on the problems of 

synthesizing nanotubes, on their physical properties 

and on possible applications in nanoelectronics,[8] ca-

talysis[9] and other fields. It should be noted that, be-

sides nanotubes consisting of carbon atoms, similar 

structures based on boron nitride also exist. However, 

in this report we restrict ourselves to the case of sin-

gle-wall carbon nanotubes. 

Let a and b denote the basis vectors of a planar 

lattice of graphite, whose unit cell (dashed rhombus in 

Fig.1(A) contains two carbon atoms of coordinates 

(a+b)/3 and 2(a+b)/3, respectively. Taking account of 

the fact that the angle between the vectors a and b is 

/3 and the vectors have the same modulus (a = b) and 

denoting by l the length of the bond between the car-

bon atoms (which is usually 0.14 nm), we obtain 

a=b=l 3 . The roll-up vector r0 is determined as a 

linear combination r0=na+mb of the basis vectors, 

where the pair (n,m) of integers is called the indices of 

the nanotube. The nanotube may be considered as a 

strip of width r0, marked up by dashed lines in 

Fig.1(A), cut out of the graphitic carbon plane per-

pendicularly to r0, rolled-up in a cylinder and closed at 

either end with caps containing carbon pentagons in a 

manner that conserves bonding length. The angle  

between r0 and the lattice vector a defines the cork-

screw symmetry of the nanotube and is called helicity 

or chiral angle. The helicity is also equal to the angle 

under which the most closely packed chains of carbon 

atoms are wound on the cylindrical surface of the tube. 

As follows from simple geometry, the nanotube indi-

ces (n,m) uniquely define the nanotube diameter d and 

helicity 
 

              ,          (1) 
 
 = arctan [ 3 m/ (m + 2n)]               (2) 
 

 

 

 

 

 

 

 

 

Fig.1  Structure of an unrolled nanotube wall (A) and of the 
cross section of a nanotube rope (B). 

Since the basis vectors a and b are equivalent, it 

can be assumed with no loss of generality that n≥m 

and therefore the helicity lies in the range 0≤≤/6. 

SWNTs with m=0 ( =0o) are labeled as zigzag, tubes 

with m=n ( =30o) are labeled as armchair, all other 

tubes (between  = 0o and  =30o) are chiral (helical). 

The structures of different SWNTs are presented in 

Fig.2. 

 

 

 

 

Fig.2  Structure of (10, 10) armchair, (20, 0) zigzag and (16, 5) 
chiral nanotube. 

It is easy to show[10] that the spatial symmetry of 

a SWNT along its axis is determined by the following 

translational vector 
 
t = q-1[(2 m + n ) a  (2n + m)b],            (3) 

 
which occurs to be orthogonal to r0 (indeed, tr0=0) 

and thus directed along the nanotube axis z. The inte-

ger q=gcd(2m+n, 2n+m) denotes the greatest common 

divisor of its arguments, therefore the modulus t of 

vector t represents the main spatial period of a nano-

tube along z. Thus in physics terms an isolated nano-

tube can be treated as a one-dimensional single crystal 

of a period t and with 2N = 4(n2 + nm + m2)/q atoms in 

the unit cell. 

3 Nanotube continuum potential 

It is noteworthy that channeling was primarily 

discovered as a result of computer simulations of ion 

beam propagation along atomic rows in a crystal, 

based on binary collisions of ions with atoms.[11] After 

the experimental evidence of channeling effect[12] 

Lindhard[13] gave a simple theoretical explanation of it. 

He showed that if a fast charged particle enters a sin-

gle crystal at small enough angle 0 with respect to an 

atomic row, it is governed by the continuum potential, 

i.e. the actual periodic potential of the rows averaged 

over the direction parallel to the rows. Then 

Erginsoy[14] went further and in the case of a small 

enough angle with respect to a family of atomic planes 

(but far from directions of main crystallographic axes) 

he introduced the continuum potential of the planes. 
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Applying the concept of continuum potential to nano-

tubes it is important that a nanotube with indices (n,m) 

can always be represented as a collection of atomic 

rows parallel to the axis of the nanotube and arranged 

in a definite manner along the perimeter of the cylin-

der. In general, the distance dR between the neigh-

bouring atoms within such a row coincides with the 

modulus of the translational vector t and is given by 
 
dR = (3l/q)(n2 + nm + m2)1/2               (4) 
 

Let us take into account the fact that the unit cell of a 

graphite plane shown in Fig.1(A) as a rhombus con-

tains two carbon atoms and the surface density  of 

atoms on the plane is  =3-3/2×4l-2. After the rolling 

up of the plane the pair of the unit cell atoms gener-

ates two sequences of atomic rows parallel to the axis 

of the nanotube. In each of the sequences the rows are 

equally spaced around the cylinder. We choose a cy-

lindrical coordinate system (r,, z) in which the radial 

coordinate r is measured from the axis of the tube, and 

we denote by ( )

k

 the azimuthal angle of the kth row 

(k=0,1,2,…,N-1) in the corresponding sequence of 

rows ( = 1,2). Thus each sequence contains exactly 
 
N = (2/q)(n2 + nm + m2)                  (5) 

 
atomic rows, whose azimuthal coordinates are deter-

mined by the relations 
 

(1)

k = k,  = q/(n2 + nm + m2),           (6) 


(2)

k = (1)

 +,  =(n+m)/(n2 + nm + m2).   (7) 
 
We note two limiting values of the helicity  = 0 and 

 = /6 where the atomic rows, parallel to the axis of 

the nanotube, have the largest linear density and 

therefore the number of the rows is relatively small. 

The first case corresponds to zigzag nanotubes (n,0); 

here, q = n, N = 2n, dR = 3l,  =  =n, and the 

two row sequences overlap, i.e. there are actually 2n 

rows with a doubled linear atomic density 2/dR. This 

overlap does not occur with zigzag nanotubes exclu-

sively, but is found, for instance, in chiral nanotubes 

with n=2m. The other case corresponds to armchair 

nanotubes (n, n); here q=3n, N=2n, dR=l 3 , =/n, 

 = 2/(3n), i.e., there are 4n rows arranged in pairs. 

It is interesting to note that the total number of 

the rows 2N (sometimes overlapping) coincides with 

the number of carbon atoms in the unit cell of a nano-

tube considered as a one-dimensional single crystal. 

The continuum potential of a nanotube can be written 

as 
 

(8) 

 

where u(r ri, z zi) is the potential of a carbon atom 

number i with coordinates (ri, zi) in the nanotube unit 

cell. Eq.(8) can be easily modified in order to take into 

account thermal displacements of carbon atoms from 

their equilibrium positions. The further analytical cal-

culations of the nanotube potential (8) are based on 

the particular expression for the Fourier-transformed 

potential f(k) given by Doyle and Turner:[15] 
 

(9) 
 

where 
 
aj = {3.222, 5.270, 2.012, 0.5499}×10-4 nm2 
 
bj = {10.330, 18.694, 37.456, 106.88} nm-1 

 
are dimensional parameters which were determined 

from the condition of the best fit of (9) to the most 

accurate calculations of f (k) based on the Har-

tree-Fock method.[16] The Doyle-Turner model (9) 

corresponds to the following representation of atomic 

potential in real space 
  

(10) 

 

To obtain the continuum potential of a nanotube 

rope inside the superlattice unit cell (shown as hexa-

gons in Fig.1(B)) it is necessary to add the continuum 

potentials of a sufficient number of neighbouring 

nanotubes. 

The calculated continuum potentials of the ropes 

of (10, 10) armchair, (20, 0) zigzag and (16, 5) chiral 

nanotubes are illustrated in Figs.3~5, respectively. For 

positive particles there are relatively deep potential 

wells inside nanotubes, about 15.9 eV for (10, 10), 

24 eV for (20, 0) and 60 eV for (16, 5), and very shal-

low (about 1 eV deep for all of the ropes) potential 

well between the nanotubes. It can be seen that chiral 

nanotubes like (16, 5) have the deepest and axially 

symmetrical potential well inside. Their continuum 

potential can be also considered as originated from the 
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potential of carbon atoms of a graphitic plane aver-

aged over the plane. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3  Continuum potentials of the ropes of (10, 10) armchair 
nanotubes. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Continuum potentials of the ropes of (20, 0) zigzag 
nanotubes. 
 

 

 

 

 

 

 

 

 

 

 
 

Fig.5  Continuum potentials of the ropes of (16, 5) chiral 
nanotubes. 

4 Continuum potentials of fullerites 

Fullerenes are molecular cages consisting of 

carbon atoms. The arrangement of atoms is almost 

exclusively in the form of hexagons and pentagons. 

Nanotubes discussed in the previous subsection may 

be considered as a kind of fullerenes. Twelve penta-

gons and twenty hexagons make the famous C60 cage. 

The C60 molecule contains a carbon at each vertex of 

the “truncated icosahedron”, C=C double bonds along 

the lines separating hexagons, C-C single bonds along 

the hexagon-pentagon boundaries, and has a diameter 

of roughly 7.1Å. 

This cage was first identified experimentally in 

Ref.[17]. It might indeed impart unusual stability to 

the C60 cluster because all valences are satisfied. The 

proposed molecule was dubbed buckminsterfullerene 

because its shape is reminiscent of the geodesic domes 

popularized by American architect Richard Buckmin-

ster Fuller. Bulk solid C60 is sometimes referred to as 

“fullerite” in analogy to graphite, and X-ray powder 

diffraction has shown[18] that fullerite adopts the 

face-centered cubic (fcc) structure with a relatively 

small Van der Waals cohesive energy and a lattice 

constant a = 14.17 Å. The molecules in fullerite freely 

rotate for temperatures above ≈257 K. At lower 

temperatures, they begin to “stick” at certain orienta-

tions and eventually, below ≈90 K ( the precise value 

depends on how fast the system is cooled), they be-

come completely stuck. Besides, the low temperature 

structure is no longer fcc but simple cubic. 

Another interesting feature of fullerite is the abil-

ity of the C60 units to polymerize at high pressure 

(30~80 kbar) and high temperature (600~1000 K)[19] 

or under intense exposure to visible or UV light. 

Three-dimensional polymerization can lead to ul-

tra-hard material, a material which is harder than dia-

mond.[20] The density of C60 formed as a fcc crystal at 

298 K is 1.65 g·cm-3 while the density of a new solid 

formed by 3D polymerization is 2.6 g·cm-3. 

Besides fullerites consisting of C60 fullerenes, 

there exist similar molecular crystals consisting of 

“non-spherical” C70 molecules.[21] The fullerene de-

rivatives (fullerides), such as compounds of fullerenes 

with alkaline metals, may also have a crystalline 

structure.[22] From the practical point of view, fuller-
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ites have still the evident advantage of being presently 

grown in single crystals of macroscopic dimensions, 

while existing nanotube ropes are available only as 

microscopic objects as yet. The speci.c features of 

continuum potentials and channeling in C60 fullerites 

were first considered in Ref.[23] and [24]. 

It should be noted that in the case of nanotube 

ropes discussed above the existence of a regular or-

dering between nanotubes is not necessary, at least for 

the channeling along the ropes. By contrast, for the 

channeling in 3D crystals, particularly in fullerites, the 

existence of perfect enough crystalline structure is 

crucial. 

There are 360 electrons in the C60 molecule, half 

of which are involved in typical covalent bonding 

between the atoms of the molecule. In a first approxi- 

mation, neglecting the influence of the bonding on 

spatial distribution of the valence electrons, we may 

calculate the total potential of C60 fullerene as a sum 

of atomic potentials centred at the vertices of the 

truncated icosahedron. We consider a normal fullerite 

crystal at room temperature in which fullerenes are 

not stuck at certain orientations or polymerized, but 

weakly bound with Van der Waals forces, and can 

rotate freely. When a fast charged particle travels 

along a fullerene row in a fullerite it collides with 

randomly oriented molecules and in the first approxi-

mation it is reasonable to average the potential of a 

fullerene row not only over the longitudinal direction, 

but also over all angular coordinates of carbon atoms. 

As a result of the averaging over the random orienta-

tions we find the fullerene potential (for a positron) in 

the form 

 

(11) 

 

where r is the distance from the centre of the fullerene 

and R = 3.53 Å is the fullerene radius. Further aver-

aging (11) along the row gives the continuum poten-

tial of the fullerene row 

 

(12) 

 

 

where dR is the distance between the centres of two 

neighbouring fullerenes in the row,  is the distance 

from the row, J0 is the Bessel function and the chan-

neling particle considered has charge +e. The effective 

potential U(r) acting on an axially channeled particle 

is the sum of potentials of the form (12) of all rows 

parallel to the given crystallographic direction: 
 

(13) 
 
where r denotes the vector coordinate in the plane 

normal to the rows, and n is the vector coordinate of 

the nth row. 

The calculated continuum potential of a fullerite 

at room temperature for positron channeling along the 

[100] direction is presented in Fig.6. 

Cartesian coordinates x, y are in the plane normal 

to the rows and measured in units of fullerene radius R 

while the z-coordinate of the plot represents the values 

of the continuum potential of a fullerite measured in 

eV. The potential wells inside the rows have almost 

axial symmetry and are about 7 eV deep. Other wells 

about 14 eV deep are located between the rows. The 

wells are separated by a relatively thin potential barri-

er. We come to the conclusion that two kinds of 

channeling of positive particles may exist in fullerites, 

one corresponding to the motion between the rows 

(like in the ordinary crystals), the other one corre-

sponding to the motion inside the rows (impossible in 

the ordinary crystals). For negative particles (electrons) 

the sign of the potential must be changed to negative, 

the wells transform to the barriers and vice versa and 

as a result there are practically no potential wells for 

the channeling of electrons along the [100] direction. 

However, more favorable conditions for electron 

channeling exist in the [110] direction. The corre-

sponding continuum potential for electrons is shown 

in Fig.7. There are wide and deep enough (about 40 

eV) potential wells separated by relatively thick barri-

ers. The interesting feature is the existence of the cen-

tral bump inside the wells. On the contrary, for posi-
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trons in the [110] direction the central well is narrower 

and much shallower than in the [100] direction. 

 

 

 

 

 

 

 

 

 

Fig.6  Continuum potential of a fullerite at room temperature 
for positron channeling along the [100] direction. 

 

 

 

 

 

 

 

 

 

Fig.7  Continuum potential of a fullerite at room temperature 
for electron channeling along the [110] direction. 

5 Motion equations 

In channeling the characteristic quantum param-

eter is the de Broglie wavelength of the particle 

D=  /mv divided by sin0 where0 is the incidence 

angle. The typical value of 0 is the Lindhard angle 

L= (2U0/E)1/2 1, where U0 is the potential well 

depth for the transverse motion. The light speed c is 

equal to unity and m, E, v,  are the mass, total energy, 

velocity and Lorentz factor of the particle, respective-

ly. The typical transverse de Broglie wavelength 

 =D/L is proportional to E -1/2 and can be compa-

rable to the width of the channels dw up to relatively 

high energies E ~102 MeV of electrons and positrons. 

Hence, the transverse motion of particles in the chan-

nels may be considered either as classical or quan-

tum-mechanical, depending on the ratio dw / . For 

the particles heavier than electrons this ratio is always 

high and the transverse motion may be considered in 

terms of classical trajectories. However, for electrons 

and positrons in the MeV energy range, numerical 

estimates show that quantum effects are important. In 

order of magnitude the ratio (dw / )2 represents the 

number of quantum bound states of the transverse mo-

tion in the two-dimensional well. Due to quantum 

tunneling through the potential barrier separating 

neighbouring channels, there are energy bands rather 

than discrete energy levels. Besides, incoherent scat-

terings of channeled particles on the electrons of the 

crystal and on atomic vibrations give rise to an addi-

tional broadening of the transverse energy levels. To 

neglect quantum tunneling through a potential barrier 

we must additionally assume that   is small com-

pared to the wall thickness. This may be the more se-

vere condition for the applicability of the classical 

approach to channeled positrons (especially moving 

close to the top of the wall). Quantum channeling is a 

well-known phenomenon in ordinary crystals[25] 

where in the axial case it is noticeable up to electron 

energies of 50 MeV.[26] However, in nanocrystals the 

situation may be different due to the larger width of 

the potential well.  

The theory of quantum channeling in nanotubes 

and fullerites can be briefly described as follows. The 

wave-functions of a channeling relativistic electron or 

positron are presented as a product of the plane-wave 

exp(ipzz), corresponding to the uniform motion in the 

axial direction, and the transverse wave-function (r) 

describing the particle motion across the axial channel 

in the continuum potential and satisfying the follow-

ing equation 
 

2[ ( )] ( ) 0r p   r r           (14) 
 
where r is the Laplacian in the plane of the transverse 

coordinates r, 2 ( )p r =2E[-U(r)], E is the total en-

ergy of the relativistic particle,  = E-( 2
zp +1)

1/2
 is the 

so-called transverse energy, U(r) is the continuum 

potential (to simplify the formulae we use here and 

below  =m=c=1 as units). Eq.(14) looks like the 

Schroedinger equation, however E plays the role of 

the “relativistic mass” of the particle. Eq.(14) implies 

that spin effects are negligible. 

It is well known that the number of transverse 

states in the axial potential wells grows approximately 

linearly with the particle energy E and for electron 

(positron) energies about 10 MeV it becomes possible 

to use classical mechanics for the description of the 
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transverse motion. As noted above, heavier particles, 

like -mesons and protons, can be treated as classical 

irrespective of their kinetic energy. Let us first con-

sider the case of classical motion of high-energy par-

ticles in a straight nanotube rope or a non-deformed 

fullerite. Since the continuum potential U(r) of the 

axial channels does not depend on time and on the 

longitudinal (with respect to the channels) coordinate 

z, there are two integrals of motion : the total energy 

of the particle E and the relativistic longitudinal mo-

mentum p‖: 
 

2 2 1/ 2( ) (1 )E U   
   r       (15) 

 
 2 2 1/ 2(1 )p    

             (16) 
 
where v‖ denotes the longitudinal velocity, v = dr/dt 

is the two-dimensional vector of the transverse veloc-

ity, the system of units  =m=c=1 is used to simplify 

the expressions. The so-called transverse energy is 

defined as the following difference  = E-(1+ 2p )1/2, 

which is an integral of motion too. On channeling or 

close to channeling conditions the inequality  E is 

always satisfied, then using the definition of and 

Eqs.(15), (16) we may rewrite it as 
 

 
 

from which we find the following well-known equa-

tion of motion in the transverse plane 
 

(17) 
 

This equation can be recognized as the Newton equa-

tion for non-relativistic transverse motion of a particle 

with “relativistic mass” E and potential energy U(r). It 

is in full agreement with the corresponding quantum 

analog Eq.(14). 

The bending of a nanotube or the crystallograph-

ic axis of a fullerite with a constant curvature radius 

Rb (large compared to the diameter of a nanotube rope 

or the thickness of a fullerite single crystal) can be 

taken into account in the analysis of the transverse 

motion by replacing the electrostatic potential U(r) in 

Eq.(17) by the e¤ective potential,[27] 
 

 

(18) 

where x is the transverse coordinate in the plane of 

bending. A particle which is initially in the middle of 

the channel and with zero transverse velocity can  

overcome the potential barrier if Ueff (d/2,0)<0, i.e., if 

the curvature radius is less than the so-called Tsy-

ganov radius Rc = Ed/(2U0) determining the tolerance 

of the channeling to crystal bending. 

6 Dechanneling and computer simulation 
method 

The Lindhard continuum potential describes to-

tally coherent scattering of particles by carbon atomic 

or fullerene rows conserving the transverse energy. 

We discuss now how the motion equations should be 

modified to take into account the incoherent scattering 

which violates the conservation of the transverse en-

ergy and eventually leads to the dechanneling. 

For this purpose, following Ref.[28], let us con-

sider with more details the scattering of the fast parti-

cle by the row of vibrating atoms. Let 0 and z be the 

transverse radius-vector and the longitudinal coordi-

nate of the particle, i the vector displacement of the 

ith atom from the axis of the row due to the thermal 

vibrations, w(i) the probability of the displacement,  

N =z/dR the number of atoms with which the particle 

interacts on its path z along the row, and dR the mean 

inter-atomic distance along the row. The potential 

acting on the fast particle from ith atom is U1(ri), 

where ri = 
2 2 1/ 2[ ( i ) ]i Rz d  ρ  is the dis-

tance between the particle and the carbon atom (we 

can assume that the row is made of equidistant atoms). 

The transverse momentum q transferred to the particle 

due to the scatterings on N atoms of the row, on as-

sumption that the scatterings are independent, may be 

presented as a sum 

 

 

where qi refers to the momentum transfer by the ith 

individual atom. If we assume that the variations of 

the transverse coordinate of the particle 0  over 

the path z along the row is small compared to the 

distance at which atomic potential changes signifi-

cantly, we find the following expression 
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the transverse plane.  

We may represent the mean (over thermal vibra-

tions) momentum transfer 
0

( )q  as the sum of the 

corresponding values for the individual atoms: 

 

 
 
where 

 
(19) 

 

Hence, the mean value of momentum transfer is de-

fined by the atomic potential U1 averaged along the 

nanotube axis and over the transverse thermal vibra-

tions of carbon atoms. It is the basis of the existing 

channeling theory. 

In the next approximation we should take into 

account the deviations q of q from the mean value 

q caused by atomic vibrations and the presence of 

electron gas. We add the mean-squared fluctuations of 

the corresponding vector qi: 
 

(20) 
 
where 2

iq  is the mean-squared momentum transfer 

from a single atom. The mean deviation by the angle 

q/E corresponds to coherent scattering by the N atoms, 

whereas the fluctuating part corresponds to incoherent 

scattering. We can assume that the intensity of inco-

herent scattering on nuclei depends on the local den-

sity na(r) of the nuclei. A similar assumption will be 

done for incoherent scattering on the electrons of the 

material with local density ne(r). On these assump-

tions the mean-squared momentum transfer during a 

longitudinal step z (containing many atomic distanc-

es, but such that na(r) and ne(r) do not vary too much) 

may be found similarly to the case of multiple scat-

tering in amorphous media. In terms of the multiple 

scattering angle s =q/E, we have then 

 

 

 (21) 

with Coulomb logarithms Ln = ln (191Z -1/3), 

Le = ln(1194Z -2/3) for electron-nucleous and elec-

tron-electron scattering, respectively. Unlike in 

amorphous media,[29] here na(r) and ne(r) are the local 

number density of carbon nuclei and medium elec-

trons as a function of the transverse coordinates r. 

These quantities, therefore 2( )q  also, vary 

strongly with r and are concentrated near the axis. 

From the equality q = q +q we may consider the 

transverse motion of a fast particle in a nanotube rope 

as a relatively smooth motion in the continuum poten-

tial on which stochastic perturbations are superim-

posed due to the incoherent scattering on atomic vi-

brations and electrons of the medium. Similar consid-

erations can be performed in the case of axial chan-

neling in fullerites[24] where additional averaging over 

the fullerene angular coordinates should be included. 

The stochastic character of the perturbations of 

the particle trajectories prevents us from formulating 

exact equations of motion. However we may apply the 

following calculation algorithm. Since the entrance 

points r0 of the particles into the channels are ran-

domly distributed over the transverse plane, we can 

use the Monte-Carlo method to determine the initial 

transverse coordinate of the particle. For the numeri-

cal calculations it is more convenient to transfer from 

motion Eq.(17) to the equation system 
 

d / d ( )t U  p r  
 

d / d /t Er p          (22) 
 
Then we integrate numerically the equations of mo-

tion (22) in the averaged potential of the nanotube 

rope U(r) over time interval t and obtain the values 

of the transverse coordinate r1 and momentum 1p  

at time t1=t. The integration interval t1 should be 

chosen so short that the nuclear number density na(r) 

as well as the electron number density ne(r) are prac-

tically constant in this interval. At the same time the 

number of collisions should be large enough for the 

validity of the Gaussian distribution of (central 

limiting theorem of the probability theory). Then, us-

ing the Monte-Carlo method we generate a random 

value of the incoherent multiple scattering angle 

 =  ,
x y

    due to incoherent scattering on path 

z≈t according to the probability distribution 
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being given above. The random value of q = E is 

then added to 1p , and the sum is considered as the 

actual value of the transverse momentum at time t1. 

The above procedure with the transverse momentum 

is repeated for the next time interval from t1 to t2 (= 

t1+t2) and so on. 

This method of taking into account incoherent 

scattering (sometimes referred to as the method of 

aggregated collisions[30]) is much faster than other 

ones, e.g. the method of kinetic equations[25] or the 

binary collisions method,[11] at least in the case of axi-

al channeling, where the phase space for the trans-

verse motion is four-dimensional and kinetic equa-

tions are too complicated, and in the case of 

high-energy particles where an extremely large num-

ber of binary collisions must be taken into considera-

tion to reach the penetration depths comparable to the 

dechanneling length. 

7 Computer simulation results 

The method of aggregated collisions outlined 

above was applied in Ref.[28] to the computer simula-

tions of the propagation of ultra-relativistic positively 

charged 150 GeV particles (e.g. positrons, protons or 

+-mesons) through a (11, 9) nanotube rope made of a 

hexagonal 2D lattice of nanotubes. The simulated 

beam of particles consists of N=103 particles, has zero 

initial angular spread and enters into the nanotube 

rope at an angle 0=L/2 equal to the half of the 

Lindhard angle L=2.83×10-5. The penetration depths 

of the particles into the rope are measured in units of 

L0=R/L= 24 m which represents the typical path of 

the particle in the rope between two subsequent en-

counters with nanotube wall. The angular distribution 

of the beam at various depths is illustrated in 

Figs.8~10 by series of scattering plots. The values of 

the penetration depth are shown in the upper-right 

corner of the corresponding plot, x and y are the an-

gular coordinates of particles in the transverse (with 

respect to the nanotube axis) plane. 

Three stages of the transformation of the angular 

distribution may be distinguished. At the first stage 

from z = 0 to z≈L0 the initial distribution quickly 

broadens due to the strong coherent scattering of the 

beam by the atomic rows. The influence of the inco-

herent scattering at this stage is relatively small. At 

the second stage from z～L0 to z～10L0 the angular 

distribution tends to the ring-like pattern, the radius of 

which corresponds to the angle of incidence (equal to 

the half of L) and the thickness of the ring is deter-

mined by the thickness of the nanotube wall. The ring 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8  Angular distribution of the beam at various depths ( the 
first stage). 
 

 

 

 

 

 

 

 

 

Fig.9  Angular distribution of the beam at various depths (the 
second stage). 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.10  Angular distribution of the beam at various depths (the 
third stage). 
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appears as a result of the multiple reflections of the 

beam on nanotube walls which lead to rotations of the 

transverse momentum of the particles at different az-

imuthal angles. At the third stage due to the increasing 

influence of the incoherent scattering the ring-like 

pattern broadens and at very large depth z ≈104L0 it is 

hardly noticeable. 

The variation of relative number Nch/N of parti-

cles bound inside the nanotubes as a function of z is 

shown in Fig.11 for 150 GeV positive particles. At 

entrance about 60% of the beam is captured into the 

nanotubes, but after a few decimetres only a small part 

of them remains bound inside the channels. The 

dechanneling length in nanotube ropes estimated from 

this figure is close to 250 mm for 150 GeV positive 

particles, which is one order of magnitude higher than 

in ordinary crystals under similar conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11  Relative number of particles remaining inside the 
nanotubes at different penetration depths into the nanotube 
rope. 

The spatial distribution of the beam over the 

transverse coordinates strongly varies with the pene-

tration depth as well. The transformation of the spatial 

distribution of the beam in the hexagonal 

two-dimensional lattice cell of the rope is illustrated in 

Fig.12. Initially at z≈0 the beam is uniformly distrib-

uted over the unit cell. A significant redistribution of 

the spatial distribution may be noticed already at 

z≈L0. It is noteworthy that, like in ordinary crystals, 

this effect may serve for the location of impurity at-

oms inside relatively short (z～L0) nanotubes, using 

secondary processes sensitive to the close collisions of 

the particles with the impurity atoms, i.e. backward 

Coulomb scattering, characteristic X-ray production 

or nuclear reactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12  Transformations of spatial distribution of the beam 
over the transverse coordinates at various depths. 

The simulated angular distribution of the beam 

passing through (11, 9) nanotubes bent with a curva-

ture radius Rb equal to Tsyganov critical radius 

Rc=1.70 m, at various penetration depths, is shown in 

Fig.13. The point 0x = 0y = 0 is the direction of the 

initial beam, supposed to be extremely collimated. It  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.13  Angular distribution of the beam passing through (11, 
9) nanotubes bent with the Tsyganov curvature radius at vari-
ous penetration depths. 
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can be seen that a noticeable part of the beam follows 

the curved channel and thus is deflected at an angle 

 = z/Rb which can be equal to several times the 

Lindhard angle. This part has an angular divergence 

close to the Lindhard angle. The remaining particles 

include non-deflected and partially deflected particles, 

the latter traveling preferably along the major super-

lattice planes. 

The relative number of particles following the 

curved nanotubes is shown in Fig.14 as a function of 

the deflection angle  = z/Rb. This figure clearly indi-

cates that about 20% of the beam may be deflected at 

angles  10 mrad which are two orders higher than 

the Lindhard angle. As pointed out above, the chan-

neling of high-energy particles in curved nanotube 

ropes is of special interest due to the possibilities of 

beam deflection at comparatively large angles. 

 

 

 

 

 

 

 

 

 

 

 

Fig.14  Relative number of particles following the curved 
nanotubes as a function of the deflection angle. 

The method of aggregated collisions was also 

applied in Ref.[24] to the case of the propagation of 

high-energy particles along [100] axial channels in 

fullerites. The results for particles with different ener-

gies E are given below. For each value of total energy 

E, the trajectories of N=103 particles with random en-

trance positions were calculated. The incident beam 

was supposed without divergence and parallel to the 

fullerite crystallographic axis. The continuum poten-

tial governing the particle motion is shown in Fig.6. 

Fig.15 illustrates the decrease of the relative number 

Nch/N of ultrarelativistic positively charged particles 

remaining in [100] axial channels as a function of the 

depth z. About 80% of the beam is initially captured 

into the channels both between and inside fullerene 

rows. Curves 1 to 3 correspond to particle energies 

E=150, 50 and 10 GeV respectively. The comparison 

of their slopes indicates that the dechanneling length 

is proportional to E. There is a slowing down of 

dechanneling at relatively large depths, apparently 

associated with the fact that at such depths channeling 

predominantly occurs between the fullerene rows 

(“square” channels of Fig.6), where the effect of in-

coherent scattering is weaker than inside the rows 

(circular channels of Fig.6). However, in average, the 

dechanneling length in fullerites occurs to be about 

one decimal order shorter than in nanotubes (at the 

same particle energies). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15  Dependence of the relative number Nch/N of ultrarela-
tivistic positively charged particles remaining in [100] axial 
channels of a fullerite at the depth z. 

The comparison of channeling of positive and 

negative particles in fullerites is illustrated in Fig.16. 

Curve 1 shows the relative number of 10 GeV ul-

trarelativistic negatively charged particles remaining 

in [110] axial channels (Fig.7) as a function of the 

depth z while curve 2 shows the similar results for 10 

GeV positively charged particles in [100] axial chan-

nels. About 80% of negative particle can be captured 

in [110] channels. The dechanneling length for nega-

tive particles is about 0.2 mm which is about two 

times less than for positive particles (in [110] chan-

nels). 

The angular and spatial distributions of 10GeV 

positron beam at various depths in a fullerite is illus-

trated in Fig.17 by a series of scattering plots. Initially 

the beam has zero angular spread and zero entrance 

angle to [100] axial channels. The penetration depths z 

1 

2 
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of the particles into the fullerite (indicated by numbers 

in the upper side of the figures) are measured in units 

of L0 = R/L = 6.786 m, where R is the fullerene ra-

dius and L is the Lindhard angle corresponding to the 

channeling in the deepest “square” well. The circle in 

all the left figures corresponds to the mentioned above 

Lindhard angle. Similarly to the case of a nanotube 

rope discussed above, at the first stage from z=0 to 

z≈L0 the initial distribution, which is represented by 

the point (0, 0) in the transverse momentum space, 

quickly broadens due to the strong coherent scattering 

of the beam by the molecular rows. The central almost 

axially symmetrical core of the angular distribution is 

probably formed by the coherent scattering of parti-

cles moving inside the more shallow (U0 7 eV) cir-

cular channels while the broader star-like distribution 

is due to the scattering of particles moving between 

the fullerene rows in almost twice deeper 

(U0  13.5 eV) “square” channels. At larger z the 

dechanneling brings some part of the beam outside the 

ring. It is interesting to note that at z 4L0 and z 8L0 

the re-focusing of the beam is observed. This is due to 

the closeness of the potential of the circular channels 

to the parabolic one. Indeed, it is known that in a 

two-dimensional parabolic potential oscillation peri-

ods of the particles with zero angular momentum do 

not depend on their oscillation amplitudes, thus after 

one oscillation period the beam can become parallel 

again. However, with the increasing penetration depth 

the focusing effect becomes weaker both due to the 

inharmoniousness of the potential and the influence of 

the incoherent scattering giving non-zero angular 

momenta to the particles. 

 

 

 

 

 

 

 

 

 

 

Fig.16  Dependence of the relative number Nch/N of ultrarela-
tivistic 10 GeV charged particles remaining in axial channels of 
a fullerite at the depth z. Curve 1 for electrons and [110] chan-

nels, curve 2 for positrons and [100] channels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17  Angular (left of a pair) and spatial (right) distributions 
of the positron beam at different depths of channeling in a full-
erite. 

The spatial distribution of the beam, shown in the 

limits of the the square unit cell of the transverse lat-

tice, at the entrance to a fullerite is homogeneous, but 

it rapidly transforms to extremely inhomogeneous 

already at z 0.6L0. Due to the approximate conserva-

tion of the phase-space volume of the beam one can 

see strong correlations between the angular and the 

spatial distributions. 

Compared to ordinary crystals bent fullerites can 

effectively deflect both positive and negative particles. 

The angular distribution of 10 GeV positron beam 

(with negligibly small initial angular divergence) 

passing along [100] axial channels of a fullerite with 

thickness z = 10L0 curved with radius Rb equal to 

Tsyganov critical radius Rc is shown in Fig.18 as the 

scattering plot. 

The similar distribution for the case of 10 GeV 



 

 

77No.2 N.K. ZHEVAGO et al.: Charged particle propagation through nanostructures and associated radiation

electrons and [110] channels is shown in Fig.19. It can 

be seen that a noticeable part of the both beams can be 

deflected at angles about five Lindhard angles. 

 

 

 

 

 

 

 

 

 

 
 

Fig.18  Angular distribution of the positron beam passing 
through the [100] channels of the fullerite bent with the Tsy-
ganov curvature radius at penetration depth z = 10L0. 

 

 

 

 

 

 

 

 

 

 
 

Fig.19  Similar to Fig.18, but for electrons and [110] chan-
nels. 

8 Emission of radiation by charged parti-

cles passing through nanocrystals 

Propagation of electrons and positrons through 

ordinary crystals as well as nanocrystals is accompa-

nied by various types of electromagnetic radiation. As 

noted above, they arise both from the non-uniform 

motion of the charged particles in the electrostatic 

potential of aligned atoms and from the transient po-

larization of the medium by the particles. Below we 

present general properties of these radiations and their 

particular features in the nanotube and fullerite cases. 

8.1 Radiative transitions (channeling radiation) 

between the transverse energy levels of MeV 

electrons and positrons 

Spontaneous radiative transitions between the 

transverse states of channeled particles give rise to the 

so-called channeling radiation (ChR). As mentioned 

above, at relatively low energies of positrons and 

electrons, there are transverse energy bands n(), 

which, in the limit of infinitely small transmittance of 

the potential barrier separating neighbouring nano-

tubes, degenerate into discrete levels. In this case the 

electromagnetic radiation can be treated as being due 

to dipole radiative transitions between the bands (lev-

els). Due to the Doppler effect caused by the relativ-

istic longitudinal motion of the particles the energy of 

an emitted photon is high compared to the transverse 

energy difference, but it occurs to be small compared 

to the energy of the particle (  E) in the region of 

E under the consideration. Electromagnetic radiation 

at quantum channeling of electrons and positrons is 

well known phenomena in ordinary crystals. There are 

review articles, e.g. Ref.[25], describing various theo-

retical approaches, corresponding experimental results 

and the usefulness of ChR for the solid state physics 

as a new spectroscopic method. 

The spectral-angular probability density of pho-

ton emission in unit time due to a spontaneous transi-

tion of a particle from band i into band f with lower 

transverse energy can be represented in the form[31] 

 

(24)    
Here (), with   1, represent the photon mo-

mentum in polar coordinates about the crystallo-

graphic axis; d  ddis the differential of the 

solid angle of emission; n = {cos, sin is the unit 

vector collinear to the transverse momentum of the 

photon, n() is the transverse energy of the particle 

with quasi-momentum in the nth band, 

if = n()-f() is the transition frequency, and  is 

the Dirac function. The matrix element of a dipole 

transition between the bands has the form 

 

 

where i denotes the periodical part of the transverse 

wave-function, S is the area of the transverse lattice 
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cell. The quasi-momentum of the particle is conserved 

(up to a reciprocal lattice vector) during the dipole 

transitions. Wavefunctions iare normalized accord-

ing to the relation 

 

 

where if is the Kronecker symbol. Following Ref.[32], 

we have taken into account the complex Doppler ef-

fect through the volume-averaged real part of the die-

lectric susceptibility of the medium ( ) 1 

  . For-

mula (24) corresponds (at each f ) to a quantum dipole 

moving with a relativistic speed in the dielectric me-

dium. In contrast to ordinary crystals, the polarization 

can indeed have a large effect on the spectrum of 

emitted frequencies via the complex Doppler effect 

determined by zeros of the Dirac function in Eq.(24). 

The characteristic channeling radiation frequen-

cies can be estimated as  ~ if E2. If  is substantially 

higher than the K-shell ionization threshold of carbon 

( K≈284 eV), we can use the “plasma” formula 
2 2

/( )
p

  

   where 2 4p e en r   is called plas-

ma frequency of the medium. In this case the relation 

between the radiation frequency and the polar angle of 

the radiation takes on the form 
 

(25) 
 
In ordinary crystals the influence of the last term in 

Eq.(25) is negligibly small due to relatively high val-

ues of the energy level difference if at any reasonable 

for channeling particle energy E (below ~1 MeV only 

ordinary electron diffraction exists). However, the 

situation can change in nanocrystals where if is by 

the order of magnitude smaller than in ordinary crys-

tals. In general case the allowed frequencies are de-

termined by the condition that the right-hand side of 

Eq.(25) is positive, which gives the following limita-

tions 
 

min max  ≤ ≤              (26) 
 

2 2 2 2 1/ 2
min [ ( ) ],if if pE E        

 
2 2 2 2 1/ 2

max [ ( ) ]if if pE E        
 
Radiation with frequencies min or max is emitted at 

zero angle . It is important that the expression in the 

brackets of Eq.(26) must be positive, otherwise radia-

tion becomes impossible at all, in other words, the 

particle energy E must be high enough to satisfy the 

condition 
 

if pE ≥               (27) 
 
Note that if depends on E via the parametric de-

pendence of the transverse energy levels on E. It 

should be taken into account that, if min and max 

happen to be outside the validity of plasma formula 

for the real part of the dielectric susceptibility, the 

dependence of the latter on  can be more complicat-

ed giving rise to a more complex Doppler effect. 

Moreover, below the K-edge the absorption of radia-

tion inside nanocrystals may be of importance. For 

example, the analysis based on energy level scheme 

calculated in Ref.[10] show that 1 MeV electrons and 

positrons channeled in a nanotube rope can emit only 

in the ultraviolet range, where radiation is almost 

completely absorbed in the matter itself and it is 

hardly possible to observe the radiation. Electrons 

with higher energy (3 MeV) can emit several lines in 

the range of 290~311 eV at zero angle of observation 

and increasing again the electron energy (9 MeV), 

radiation at even higher frequencies (1.3~2.2 keV) 

becomes possible. As for the intensities of the lines, 

they depend, besides the dipole matrix elements, on 

the life-time and the populations of the levels. The 

initial populations depend on the entrance angle of the 

beam with respect to the channels while the redistri-

bution between the levels occurs due to the incoherent 

scatterings of the beam on substance electrons, fluctu-

ations of the potential and other reasons which are 

superimposed on the radiative transitions. More de-

tailed information on this problem can be found in 

review articles [25] and references therein. 

Expression (24) describes radiative transitions 

between the above-barrier transverse energy bands of 

low energy particles as well. If the transverse energy 

is high above the barrier, i.e. the entrance angle of the 

particles substantially exceeds the Lindhard critical 

angle, we can consider the continuum potential as a 

source of a small perturbation of the incident wave 

function (plane wave) of the particle and use the first 

Born approximation to calculate such a perturbation. 

This regime of the radiation mechanism is called co-

herent bremsstrahlung (CB). In the first Born ap-

proximation the radiation probability is proportional 
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to the squared charge of the particle, therefore in con-

trast to ChR discussed above, there is no difference in 

the radiation spectra from electrons and positrons. 

Historically CB was predicted and investigated ex-

perimentally in ordinary crystals[33] early before the 

channeling, however only with the discovering of the 

latter the unified approach to the problem of radiation 

of fast particles in crystals was developed enabling to 

define the limits for the old theory of CB based on the 

Born approximation. We discuss this theory below in 

conjunction with CB and ChR from ultra-relativistic 

electrons and positrons in nanocrystals. 

8.2 Coherent bremsstrahlung and channeling 

radiation from ultra-relativistic electrons 

and positrons 

The standard theory of CB and coherent elec-

tron-positron pair production by -photons in crystals 

is based on the Born approximation. This approach 

implicitly assumes that the change in the direction of 

the charged particle momentum between the succes-

sive collisions with atomic rows or planes (or the 

change of the e+e-
-angle) is small in comparison with 

the effective angle eff ~ E -1 for the emission of radia-

tion by ultra-relativistic particles. On the other hand, it 

is well known[34] that the character of the electromag-

netic radiation from a charged particle in an external 

electromagnetic field substantially depends upon the 

relation between the angular deviation dev of the par-

ticle from the initial direction of motion and the effec-

tive angle of radiation eff. If the deviation is relatively 

small (dev E -1), the radiation spectrum has a dipole 

character, i.e. it is determined by the Fourier time ex-

pansion of particle velocity. In this case the radiation 

is formed over a relatively long path lcoh=2/(-kv) 

called the coherence length[33] (or the formation zone) 

of radiation. For radiation in vacuum (k = ) and in 

the direction close of particle velocity we may esti-

mate the coherence length as lcoh~E 2 which substan-

tially exceeds the wavelength of radiation . The CB 

arises if the coherence length coincides with the path 

between the successive collisions of the particle with 

atomic rows or planes. For ultrarelativistic particles 

the CB condition can be satisfied if they move at 

small angle to the crystallographic plane or axis, 

however one should keep in mind that in this case the 

angular deviation dev of the particle will increase due 

to the channeling effect. 

In the opposite case of large deviation angles 

(dev E -1) the analysis of the problem can be sim-

plified significantly. Indeed, since during this rela-

tively short time interval the electric field of the crys-

tal can be considered as constant in space, the trajec-

tory details are not important for the radiation spec-

trum and it occurs to be similar to the synchrotron 

radiation spectrum, i.e. it is totally determined by the 

local value of particle acceleration, but since the latter 

varies along a trajectory, the synchrotron-like spec-

trum must be averaged over time along particle tra-

jectories. Between these limiting cases there is an in-

termediate region dev~E -1 where the details of the 

particle trajectory are of importance and it is the most 

difficult case for the theoretical analysis of the radia-

tion spectrum. 

Let us consider the most simple case of chan-

neled particles with relatively low (E ≤ (1)
crE ) energies 

(but high enough to use classical mechanics). In the 

frame of the dipole approximation the ChR spectrum 

from particles moving inside the chiral nanotubes was 

calculated.[35] The energy I() radiated by a single 

channeled particle per unit path in a nanotube and per 

unit frequency interval can be written as 
 

(28) 

  
where n n      ,  f ( ) = (1-2 + 2 2)  ( ),  is the Heaviside step-function and 
 

 

 

originate from the Fourier expansion of the linear 

combinations x±iy of the Cartesian components of 

the transverse velocity of the particle.[36] 

The radiation spectra from channeled positrons 

and electrons are shown in Fig.20 in the case of a 

beam with zero angular divergence entering the (11, 9) 
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nanotubes at half of the Lindhard angle. The target 

thickness is considered to be small compared to the 

dechanneling length and the spectrum (28) was aver-

aged over the random values of the initial coordinates 

of the particles. To emphasize the scaling of the dipole 

spectrum we introduced the characteristic frequency 

c = 4E 2L / d ~ E 3/2 and the spectral density 
2 2 1/ 2/ 2 ~c c LI Pe E  , where P is the probability 

of capturing particle into the potential well.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.20  The radiation spectra from positrons (e+) and electrons 
(e-) channeled in (11, 9) chiral nanotubes. 

Compared to positrons, channeled electrons 

along with the peak near ≈c associated with the 

nutations of the orbits back and forth the fullerene 

spheres, produce more intense and hard radiation at 

≈8c due to the relatively fast radial oscillations. 

The calculated spectra does not take into account the 

input from positrons moving between the nanotubes as 

well as from above-barrier particles, however it shows 

a substantial difference in the shape and intensity of 

ChR spectra from electrons and positrons, in other 

words, the spectra are strongly charge-dependent. 

Coherent bremsstrahlung (CB) in nanocrystals 

has a number of peculiarities. Electrons or positrons 

are scattered by a nanotube as a whole and since 

nanotubes in a rope make a two-dimensional superlat-

tice, they can act coherently in the formation of CB, 

similarly to the atomic rows in ordinary crystals. It 

should be noted that if the entrance angle is above but 

still comparable to the Lindhard angle (L<0 ≤2L), 

then particles may deflect significantly in the trans-

verse plane destroying the coherence, similarly to the 

case of the ordinary crystals.[35] The significant co-

herence between nanotubes (or atomic rows in ordi-

nary crystals) may exist only at higher entrance angles 

0 ≥2L where standard theory of CB is applicable. 

As far as the CB in fullerites are concerned, it is quite 

similar to the case of ordinary crystals with the excep-

tion that instead of collisions of charged particles with 

atoms there are collisions with C60 fullerenes. 

According to the standard theory of CB in ordi-

nary crystals, the emission probability per unit path of 

electron (positron) moving in a crystal at small angle 

to atomic rows or planes, differential with respect to 

the photon energy , can be related to the Fourier 

component of the continuum potential of the atomic 

row VH  

 

(29) 
 
Here we use the following notations:  is the unit 

vector along the direction of the initial momentum of 

the charged particle, u = / (E -),H = u / (2E·H), 

 is the Heaviside step function. The summation in 

Eq.(29) is performed over all reciprocal lattice vectors 

H = {Hx, Hy} orthogonal to the chosen family of the 

rows (directed along z). In its turn, in monatomic 

crystal VH is connected with the Fourier expansion of 

the atomic potential f(k) (Eq.(9)) by the simple rela-

tion 
 

1 2 2exp( ) ( , ,0)x yV H u f H H H D   
where D is the unit cell volume of the crystal and u2 is 

the squared amplitude of the thermal vibrations. If 

atomic rows are chaotically spaced, or the direction of 

 is far from the direction of closely packed atomic 

planes, we may substitute the summation in Eq.(29) 

by an integration according to the rule 

 

 
 
In order to calculate CB from nanotube superlat-

tices we must generalize Eq.(29) according to Ref.[10]. 

Since different nanotubes in a rope have different az-

imuthal orientations we may first average the nano-

tube potential (Eq.(8)) over azimuthal positions of the 

nanotube rows (cf. Eqs.(6) and (7)). Then considering 

the continuum potential of a nanotube as azimuthally 
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symmetric, the generalization reduces to the substitu-

tion of the Fourier expansion of the string potential VH 

by the corresponding expansion of the continuum po-

tential of the nanotubes over the reciprocal superlat-

tice vectors H . The difference between the exact po-

tential (8) and the averaged over azimuthal angles 

gives rise to a semi-coherent radiation (incoherent 

between nanotubes, but coherent between atoms of the 

same row), due to scatterings on separate atomic rows. 

As shown in Fig.4, this semi-coherent radiation may 

be significant for zigzag or armchair nanotubes, but it 

should be relatively small for chiral nanotubes due to 

the relatively weak dependence of the continuum po-

tential on the azimuthal angle. Similarly, in a fullerite 

CB is described by Eq.(29) where VH must be re-

placed by the corresponding Fourier expansion of the 

fullerene potential (Eq.(11)). 

The distribution of the coherent bremsstrahlung 

energy per unit photon energy   and per unit path 
2( ) d / d( )dI w z    is shown in Fig.21 for 

1 GeV electron (positron) entering at 0=2 ( )s
L , where 

( )s
L  is the Lindhard angle for the channeling, to the 

rows of nanotubes laying in (1, 0) planes of the rope. 

The dashed line represents the bremsstrahlung in case 

of randomized positions of carbon atoms (amorphous 

medium). 

The similar CB spectrum from 1 GeV electron 

(positron) entering at 0=5 ( )s
L to [111] fullerite axis 

is plotted in Fig.22. Compared to the case of ordinary 

crystals the maximum of the first radiation harmonic 

is at much lower photon energy. Besides, all harmon-

ics have a fine structure associated with the hollow 

structure of nanotubes and fullerenes. 

 

 

 

 

 

 

 

 

 
 

Fig.21  The frequency distribution of the coherent brems-
strahlung power from 1 GeV electron (positron) entering at 
0=2

( )s

L  to the rows of nanotubes laying in (1, 0) planes of 
the rope. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.22  The frequency distribution of the coherent brems-
strahlung power from 1 GeV electron (positron) entering 
at0=5

( )s

L to [111] fullerite axis. 

8.3 Radiation due to the Bragg diffraction of the 

own electromagnetic field of fast charged 

particles 

At last let us discuss the X-ray radiation from 

relativistic charged particle arising from the Bragg 

diffraction of the own electromagnetic field of a parti-

cle in crystals or MLS, which is called parametric 

X-ray radiation (PXR). It was predicted by 

Ter-Mikhaelyan[33] who developed the theory based 

on the kinematical diffraction of virtual photons in 

infinite nonabsorptive media. The influence of ab-

sorption and extinction of X-rays inside crystals was 

taken into account later[37] using the two-wave dy-

namic diffraction method. PXR in ordinary crystals 

was discovered and investigated experimentally.[38~40] 

The modern state of the theory and experiments in this 

field was presented recently in review article[41] where 

a comprehensive list of works devoted to PXR can be 

found. It should be noted that PXR is often referred to 

as quasi-Cherenkov, resonance transition or even dif-

fraction X-ray radiation. The peculiarities of PXR 

from nanocrystal were investigated quite recent-

ly.[42,43] 

General approach to the problem is based on the 

multi-wave diffraction theory.[37,42] We expand the 

electric field in a superlattice in series of Bloch waves 

and from Maxwell equations find the following infi-

nite system of algebraic equations for the expansion 

coefficients EK(k,)  
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(30) 
 
In this equation 
 
 
 
are Fourier coefficients of the periodic complex die-

lectric susceptibility ( r) of a crystal, H and K are 

the reciprocal lattice vectors and V is the volume of 

the crystal unit cell. It differs from usual equations 

describing X-ray diffraction only by the term in the 

right-hand side which represents the electric current of 

the uniformly moving electron. In most practical cases 

only two Bloch waves are of importance and the infi-

nite system of Eq.(30) turns to the following two pairs 

of equations corresponding to the different ( or ) 

polarization of the electromagnetic field 
 

2 2 2 2[ (1 ) ] 8 i ( )s sk E C E e P           0 0 H H k v  
 

                    2 * 2 2
0 0[ (1 ) ( ) ] 0sC E E       H Hk H                            (31) 

 
The  and  polarizations are respectively parallel and 

perpendicular to the incidence plane of the particle, 

Ps = cosCs = cos for s =  and Ps = sinCs = 1 for 

s = . The exact solution of Eq.(31) corresponds to 

PXR of the two-wave dynamical diffraction theory. 

More simple kinematical theory assumes EH  to be 

small compared to E0 . As shown in Ref.[43] for 

nanocrystals the kinematical theory is quite sufficient. 

It is also reasonable to consider the case of relatively 

thick (T  la) medium where the output of PXR is 

maximum. In this case the solution of Eq.(31), using 

the relative smallness of the diffracted field EH , 

leads to the following spectral-angular distribution of 

PXR photons both for the symmetrical Bragg case and 

Laue (radiation through the backward crystal interface) 

case:* 

 

 
(32) 

Here (/2+) is the angle between the particle veloci-

ty v and the reciprocal vector H; B = H/(2 sin) ( it is 

supposed that is much higher than the “Fresnel angle” 

~
1/ 2

( ) 

  to the reflecting crystal planes); the polar 

angle  of radiation is counted from the specular di-

rection of the particle velocity and the azimuth angle  

from the incidence plane. The line shape of the spec-

trum (32) is determined by the normalized Lorentz 

curve 

 
 

(33) 
 
* In Ref.[43] the PXR photon number was underestimated by 
factor 2. 

The line width  of PXR radiated at sufficiently small 

solid angle interval around ,  is determined by the 

imaginary part of the volume-averaged dielectric sus-

ceptibility ( )  : 

 

 
 
 

Integrating (32) over , azimuth angles , and polar 

angles from zero to some m ~ [E -2 - ( ) 
 ]1/2, cor-

responding to the detector aperture (of the order of the 

virtual photon angular spread), we find the total num-

ber of PXR photons Ns per electron 

 

 

(34) 

 

where  m = (m),  0 = (0). 

Assuming that the modulation depth of the crys-

tal electron density does not depend substantially on 

the modulation period the number of photons with 

energies  B is proportional to the squared inter-

planar space 2
pd ~ H -2. According to Eq.(33), the 

maximum shiftmax of the photon energy from B 

corresponding to  =± depends on the detector ac-

ceptance angle m and the incidence angle of electrons 

 through the relation 

 

(35) 
 

This relation determines the width  of PXR spec-

trum captured by a detector with relatively large 

(compared to the rocking curve width) acceptance 
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angle. 

The total number of PXR photons (Eq.(34)) with 

frequencies around B radiated by one electron with 

Lorentz factor   = 103 into the solid angle 

0≤≤2[E -2 - ( ) 
 ]1/2 and 0≤≤2 from nano- 

crystals as a function of the peak radiation frequency 

B (determined by the incidence angle  to the crystal 

planes) is plotted in Fig.23, where (a) refers to the 

perpendicular polarization and (b) to the parallel po-

larization of photons.[43] 

For comparison there are also the corresponding 

results obtained for the carbon-tungsten multi-layered 

structure (MLS) and some ordinary crystals. Curves N 

correspond to the reflection from (1, 0) planes of (10, 

10) nanotube ropes, curves F to (111) planes of fuller-

ite, and curves C-W to the carbon-tungsten multi-

layered structure with period d=16Å and equal thick-

ness of the adjacent layers. Curves D and Ge corre-

spond to the reflection from (220) planes of diamond 

and germanium crystal at room temperature, respec-

tively (in diamond-like crystals (110) reflection is 

suppressed due to the structure factor). Solid curves 

represent the results based on the dynamic diffraction 

theory[43] and broken ones on the kinematical theory 

(Eq.(34)). For the nanocrystals and diamond the re-

sults of the dynamic and kinematical theory coincide 

with the accuracy corresponding to the curve thick-

ness. Some difference may be noticed in case of C-W 

MLS and for germanium (and probably other high Z 

crystals) the difference is substantial. The dips on all 

parallel polarization curves at some photon energies 

show that at such energies (incidence angles close to 

the Brewster angle ≈45o of X-rays) PXR is linearly 

polarized perpendicular to the incidence plane. 

Inside the photon energy interval from 1 keV to 

30 keV both nanocrystals and MLS are more efficient, 

by two orders of magnitude in photon yield, than or-

dinary crystals. At photon energies higher than 10 keV 

the nanotube ropes dominate over fullerite and car-

bon-tungsten MLS. In the vicinity of 3 keV photon 

energy the total number of photons (in the 

above-defined solid angle) per electron from a nano-

tube superlattice is about 10-5, which is comparable to 

that from the carbon-tungsten MLS, while ordinary 

crystals like diamond or germanium are unable to emit 

PXR at such low frequencies at all. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.23  The total number of polarized quasi-monochromatic 
PXR photons with a frequency close to the Bragg frequency, 
radiated by electron with Lorentz factor  =103 into the effec-
tive solid angle from various periodic media. (a) Perpendicular 
polarization, (b) Parallel polarization. 

 

 

 

 

 

 

 

 

 

 

 

Fig.24  The relative width of PXR photon spectra from vari-
ous media as a function of the radiation frequency. 

The relative widths of the photon spectra from 

various media calculated using Eq.(32) are illustrated 

in Fig.24. One can see that PXR from ordinary crys-

tals have much narrower photon energy distributions 

than from superlattices. However, it should be noted 

that for some applications, such as X-ray lithography, 

the whole number of photons is more important than 

high monochromaticity. Thus PXR from nanotube 

ropes and fullerene crystals represent relatively bright, 
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quasi-monochromatic and frequency-tunable (through 

the choice of electron incidence angle) source of 

X-rays for those applications which do not demand 

very high radiation monochromaticity. It should be 

noted that PXR-based source can operate at much 

lower energies E of the emitting electrons than syn-

chrotron radiation at compatible radiation frequencies. 

9 Conclusions 

Fullerite single crystals and aligned nanotubes 

can find various applications in such fields as: produc-

tion of X-rays with high-energy particle beams, Bragg 

mirrors for X-rays down to nanometre wavelength 

which are probably more resistant to extreme irradia-

tion and heating than other soft X-ray mirrors, steering 

of charged and neutral particle beams, etc. 

Our theoretical calculations and computer simu-

lations clearly indicate that nanocrystals are compara-

ble to or even go beyond the regular targets (crystals) 

for the production of intense quasi-monochromatic 

X-ray photons of parametric X-ray radiation (PXR), 

coherent bremsstrahlung (CB), channelling radiation 

(ChR), and other types of emission. The intensity of 

PXR from nanocrystals can be up to three orders 

higher than in ordinary crystals like diamond; moreo-

ver, it becomes possible to extend the PXR spectrum 

to the soft X-ray region where ordinary crystals can-

not emit this type of radiation at all. Using channelling 

of high-energy particles in bent nanotubes or fullerites 

it is possible to deflect and focus both positively and 

negatively charged particles more effectively than in 

ordinary single crystals. 

Other interesting phenomena like X-ray and 

thermal neutron channeling in multi-wall nanotubes, 

Bragg diffraction of soft X-rays, channeling in spirally 

bent nanotubes and channeling radiation at very high 

particle energies stayed beyond the scope of the pre-

sent report. The comprehensive review of all men-

tioned phenomena will be published soon elsewhere. 
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