A study on indirect radiolabeling of IgG with carrier free ¹⁸⁸Re

ZHANG Xiu-Li, WANG Yong-Xian, LI Jun-Ling, YIN Duan-Zhi

(Shanghai Institute of Nuclear Research, the Chinese Academy of Sciences, Shanghai 201800)

Abstract ¹⁸⁸Re labeled monoclonal antibodies are potential candidates for use in radioimmunotherapy. S-Bz-MAG₃ as a bifunctional chelating agent was used for labeling of IgG with carrier free ¹⁸⁸Re by pre-radiolabeling of the chelating approach. The conjugation conditions were optimized. The stability of ¹⁸⁸Re-MAG₃-IgG *in vitro* was high. The results may be useful to the studies of ¹⁸⁸Re labeled MAbs for radioimmunotherapy.

Keywords Carrier free ¹⁸⁸Re, IgG, S-Bz-MAG₃, Radioimmunotherapy, Bifunctional chelating agent, Indirect radiolabeling

CLC numbers 0615.4

1 Introduction

With the advent of monoclonal antibodies (MAbs), there has been a renewed interest in their use for targeted delivery. MAbs that carry particle-emitting radioisotopes offer a powerful approach to cancer therapy in view of their exquisite specificity and targeting capability. They are the potential candidates for the use in radioimmunotherapy (RIT).^[1]

A number of β emitting radionuclides have been recommended as being useful to radioimmunotherapy. ¹³¹I (β , $E_{max} = 0.6$ MeV) is a commonly used radionuclide for clinical RIT. However, the low β -energy, de-iodination in vivo of the labeled protein and easy release from target tissue limited its use. Another nuclide, ⁹⁰Y (β , $E_{max} = 2.2$ MeV), was often accumulated in liver, spleen, and bone marrow if it was released from the labeled compounds in vivo. This has stimulated the search for more effective radioisotopes for RIT.^[2]

¹⁸⁸Re (β, $E_{max} = 2.12$ MeV; 155keV γ-photons, 15%) is a very attractive radioisotope for RIT. Rhenium chemistry is dominated by redox reactions, and perrhenate, like pertechnetate, is a negatively charged anion that is rapidly excreted from living systems, preventing the ultimate metabolite from accumulating in non-target tissues.^[3] However, the greatest importance is the availability of carrier-free ¹⁸⁸Re-perrhenate by saline elution of a ¹⁸⁸W/¹⁸⁸Re generator system.^[4] The ¹⁸⁸Re isotope, with its 16.9 h half-life, is very promising for RIT. The ¹⁸⁸W has a half-life of 69 days, which means that such a generator would have an extended lifetime for more than half a year. The high-energy β -particles emitted by ¹⁸⁸Re has a longer mean path length (about 2.2 mm), which results in a more homogeneous distribution of the radiation dose.

There are two approaches to the ¹⁸⁸Re-labeling of MAbs—direct labeling and indirect labeling. The direct labeling is a convenient and efficient method, but the labeled MAbs are shown to be unstable both in vivo and in vitro.^[5,6] The indirect labeling, on the other hand, involves formation of ¹⁸⁸Re complex with a bifunctional chelating agent and conjugation of the ¹⁸⁸Re-BFCA complex to MAbs in a separate step on the trace level.^[6]

S-bezonyl-mercaptoaceyltriglycine (S-Bz-MAG₃) has been extensively used in nuclear medicine both as ^{99m}Tc radiopharmaceutical for kidney imaging and as a prosthetic group for labeling antibodies and biomolecules with ^{99m}Tc, ¹⁸⁶Re and ¹⁸⁸Re.^[7-11] MAG₃ and related derivatives are attractive ligands for coupling biomolecules^[12] in that they provide very stable complexes. The metabolites arising from enzymatic cleavage would be expected to be cleared through the kidney. Furthermore, Tc/Re-MAG₃-labeled biomolecules could be used as a matched pair system in radiodiagnostic and radiotherapeutic applications.

Supported partially by Key Project of Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX1-SW-08) Received date: 2002-04-16 The use of ¹⁸⁸Re labeled antibodies and biomolecules for targeted radiotherapy is, in principle, an attractive concept. We have investigated the feasibility of using S-Bz-MAG₃ as a BFCA for indirect labeling IgG with carrier free ¹⁸⁸Re. In our studies, S-Bz-MAG₃ is labeled with ¹⁸⁸Re at first, then, the radiolabeled MAG₃ is chemically activated to obtain ¹⁸⁸Re-MAG₃-TFP, and the activated ester is coupled to IgG at last (Fig.1).

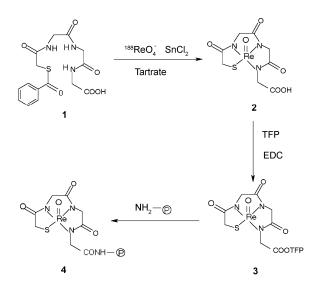


Fig.1 The route of ¹⁸⁸Re labeling IgG.

2 Materials and methods

2.1 Materials

¹⁸⁸Re was obtained from an alumina-based ¹⁸⁸W/¹⁸⁸Re generator (Shanghai Ke Xing Pharmaceutical Co.), loaded with the ¹⁸⁸W solution supplied by the Oak Ridge National Laboratory (Oak Ridge, TN). Carrier-free ¹⁸⁸Re was eluted from the generator with 0.9% NaCl. The nuclear purity of ¹⁸⁸Re was more than 99% analyzed by γ -spectroscopy with a high purity germanium (HPGe) detector (GEM-15190, EG & G Ortec, Oak Ridge, TN USA) and the radiochemical purity of Na¹⁸⁸ReO₄ was more than 95% by paper chromatography developed with 0.9% NaCl.^[4] A solid scintillation counter with NaI (Tl) crystal was used for radioactivity measurements. Human IgG-reagent grade (SIGMA); 2,3,5,6-tetrafluorophenol (TFP), 1ethyl-3-(3-dimethylaminopropyl)-carbidiimide (EDC) (TCI); Sephadex G25 (Pharmacia); Sep-Pak C18 cartridges (Waters). All other chemicals were of guaranteed grade.

2.2 Methods

2.2.1 Synthesis of 188 Re-MAG₃ (2)

4 mg SnCl₂ • 2H₂O, 4 mg ascorbic acid, 1 mg S-Bz-MAG₃ solution, and 0.5mL 37~370 MBq/mL ¹⁸⁸Re solution were added in turn to 0.5 mL of 0.1 mol $\cdot L^{-1}$ tartrate buffer solution (pH = 5). The reaction mixture was allowed to react in boiling water for 1 hour. The labeling yield and radiochemical purity of ¹⁸⁸Re-MAG₃ were determined by two-strip Xinhua No.1 paper chromatography. The PC strip was developed with tetrahydrofuran: chloroform: acetone = 2:1:1 for the detection of ¹⁸⁸Re-MAG₃ ($R_f = 0$) and hydrolyzed rhenium (188 ReO₂) ($R_f = 0$). The other PC with normal saline was for detecting hydrolyzed rhenium(¹⁸⁸ReO₂) ($R_f = 0$). 1.0 mL ¹⁸⁸Re-MAG₃ solution was diluted with 3 mL 1% acetic acid-water, passing through a Sep-Pak C18 column (Waters), which was activated with 10 mL alcohol and 10 mL 1% acetic acid-water in turn, then rinsed with 10 mL 1% acetic acid-water. Remaining water residues were purged with nitrogen, and ¹⁸⁸Re-MAG₃ eluted with 2.5 mL 90% acetonitrile. The solution was evaporated under a stream of nitrogen at 100°C.

2.2.2 Synthesis of ¹⁸⁸Re-MAG₃-TFP (3)

The residue of **2** was dissolved in 500 µL water. 200 µL of 100 g • L⁻¹ 2,3,5,6-tetrafluorophenol in MeCN/H₂O (9:1) and 50 mg EDC were added. The pH was adjusted to 6 with 0.5 mol • L⁻¹ H₂SO₄. The reaction mixture was incubated at room temperature and protected from light for 1 h. The ¹⁸⁸Re-MAG₃ -TFP ester was diluted with water to a volume of 4 mL and purified on two activated Sep-Pak C18 cartridges. Washed with 10 mL water, 10 mL 20% (*V/V*) EtOH/0.01 mol • L⁻¹ sodium phosphate (pH = 7.5), 5 mL water and 2 mL diethylether in turn, the active ester was dried at room temperature by a stream of nitrogen.

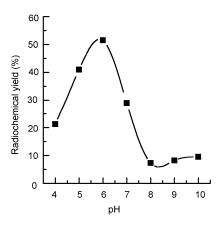
2.2.3 Preparation of ¹⁸⁸Re-MAG₃-IgG conjugates (4)

The purified ester was dissolved in 500 μ L 0.9% NaCl, and 0.5 mg IgG (1.0 mg •mL⁻¹) was added. The reaction mixture was allowed to react at room temper-

ature for sometime to obtain ¹⁸⁸Re-MAG₃-IgG. The radiochemical yield of the ¹⁸⁸Re-MAG₃-IgG was determined on Xinhua No.1 paper using 0.9% NaCl as developing agent. ¹⁸⁸Re-labeled IgG remains at the origin, while sodium perrhenate migrates to the top of the strip.^[5] The labeled IgG was purified by Sephadex G25, which is packed into 0.5 cm×20 cm, and equilibrated with 0.05 mol • L⁻¹ PBS buffer (pH = 7.5). The reaction volume was loaded onto the column and the eluate was collected in plastic tubes for monitoring with a NaI (TI) scintillation counter.

2.2.4 In vitro stability

0.5 mL radiolabeled IgG, purified by Sephadex G25, was added to 1.0 mL 0.9% NaCl and 1.0 mL 0.05 mol \cdot L⁻¹ EDTA, respectively. The solutions were incubated at 37°C for 20 h, sampled at various time points for the determination of ¹⁸⁸Re-MAG₃-IgG by paper chromatography.


3 Results and discussion

In the synthesis outlined in Fig.1, S-Bz-MAG₃ was labeled with ¹⁸⁸Re in the presence of tartrate, citrate and gluconate as transfer ligands at pH = 5, respectively. The labeling yield of ¹⁸⁸Re-MAG₃ was more than 98%. The labeling yield of ¹⁸⁸Re-MAG₃ appeared highly dependent on the reaction time and the concentration of SnCl₂. The influence of pH on the labeling yield is negligible. So almost quantitative yield of ¹⁸⁸Re-MAG₃ was obtained similar to the method.^[12] ¹⁸⁸Re-MAG₃ is a stable compound in aqueous solution. As a result, 95 ± 6% pure ¹⁸⁸Re-MAG₃ was obtained after the Sep-Pak C18 column purification step.

¹⁸⁸Re-MAG₃ could be converted to the corresponding radiolabeled ¹⁸⁸Re-MAG₃-TFP, using EDC as condensing agent. According to the method,^[8] the radiolabeled active ester was separated from the excess of activation agent by using two Sep-Pak C18 cartridges. Impurities were eluted with water, ethanol, etc. To elute the radiolabeled active ester, 2 mL acetonitrile was sufficient. Radiochemical yield of the prepared ¹⁸⁸Re-MAG₃-TFP was 70~80%.

The radiolabeled active ester could be conjugated with IgG in aqueous solution. The radiochemical yield

of ¹⁸⁸Re-MAG₃-IgG was higher at pH = 6 than other pH values. Fig.2 shows the influence of pH on the radiochemical yield of ¹⁸⁸Re-MAG₃-IgG. The influence of coupling time on the radiochemical yield of ¹⁸⁸Re-MAG₃-IgG at pH 6 is shown in Fig.3. The optimized coupling time is 2 h.

Fig.2 Influence of pH on the radiochemical yield of ¹⁸⁸Re-MAG₃-IgG.

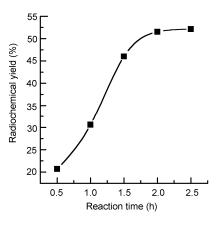


Fig.3 Influence of coupling time on the radiochemical yield of ¹⁸⁸Re-MAG₃-IgG.

 Table 1
 Stability of ¹⁸⁸Re-MAG₃-IgG in different solutions

			(%)
<i>t</i> (h)	0.05 mol·L ⁻¹ PBS (pH 7.5)	Saline	0.05 mol·L ⁻¹ EDTA
1	99.5	99.0	98.0
3	98.1	97.6	97.2
20	96.2	95.2	92.6

Results of the stability determination of ¹⁸⁸Re-MAG₃-IgG are shown in Table 1. We have found that ¹⁸⁸Re-MAG₃-IgG exhibits a good stability

in vitro.

4 Conclusions

S-Bz-MAG₃ as a bifunctional chelating agent was used for labeling of IgG with carrier free ¹⁸⁸Re by pre-radiolabeling of the chelating approach. The conjugation conditions were optimized. The stability of ¹⁸⁸Re-MAG₃-IgG in vitro was high. The results may be useful to the studies of ¹⁸⁸Re labeled MAbs for radioimmunotherapy.

Because the ¹⁸⁸ Re labeling conditions are influenced by many factors, we did some general studies of carrier free ¹⁸⁸Re labeled IgG via S-Bz-MAG₃ as BFCA. This work may be useful to the studies on indirect ¹⁸⁸Re labeling of MAbs for radioimmunotherapy.

References

- Sykes T R, Somayaji V V, Bier S *et al*. Appl Radiat Isot, 1997, **48**: 899-906
- 2 Griffiths G L, Goldenberg D M, Knapp F F et al. Cancer

Res, 1991, **51**: 4594-4602

- 3 Iznago-Escobar N. Nucl Med Biol, 1998, 25: 441-447
- 4 Yu J F, Yin D Z, Min X F *et al.* J Labelled Cpd Radiopham, 1999, **42**: 233-243
- 5 Ding Z G, Yu J F, Yin D Z *et al.* Nucl Tech (in Chinese), 2000, **23**: 762-766
- 6 Najafi A, Alauddin M M, Sosa A *et al.* Nucl Med Biol, 1992, **19**: 205-212
- 7 Guhlke S, Schaffland A, Zamora P O *et al*. Nucl Med Biol, 1998, **25**: 621-631
- 8 Visser G W M, Gerretsen M , Herscheid J D M et al. J Nucl Med,1993, 34: 1953-1963
- Gog F B , Visser G W M, Klok R *et al.* J Nucl Med, 1996,
 37: 352-362
- Hjelstuen O K, T φ nnesen H H, Bremer P O *et al.* Nucl Med Biol, 1998, 25: 651-657
- 11 Gog F B, Visser G W M, Gowrising R W A *et al.* Nucl Med Biol, 1998, **25**: 611-619
- 12 Fritzberg A R, Kasina S, Eshima D et al. J Nucl Med, 1986, 27: 111-116