Preparation and bio-distribution of bone tumor therapeutic

radiopharmaceutical ¹⁵³Sm-TTHMP

JIANG Shu-Bin¹, LUO Shun-Zhong¹, LIU Guo-Ping¹, DENG Hou-Fu², BING Wen-Zeng¹, WANG Wen-Jin¹,

WEI Hong-Yuan¹, HU Shu²

(¹Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900; ²Department of Nuclear Medicine of First University Hospital, West China Medicine Center, Sichuan University, Chengdu 610041)

Abstract TTHMP (triethylenetetraaminehexamethylenephosphonic acid) was labeled with ¹⁵³Sm. The labeling condition, stability, mole ratio of ¹⁵³Sm to TTHMP, rabbit bone imaging and bio-distribution of ¹⁵³Sm-TTHMP in mice were investigated. The results showed that weak basic media and high concentration ligands were favorable to form ¹⁵³Sm-TTHMP; labeling compounds were stable at pH 7 in 7 days. The results also indicated that the chemical mole ratio of ¹⁵³Sm-TTHMP is $n(^{153}Sm) : n(TTHMP) = 1 : 1$ and skeleton uptake of ¹⁵³Sm-TTHMP is high((13.96±3.51)%/g at 1h post injection and (13.54±2.98)%/g at 48h post injection), while the non-target tissue uptake is relatively low, so ¹⁵³Sm-TTHMP is a promising bone tumor therapeutic agent.

Keywords Bone tumor, Therapeutic radiopharmaceuticals, ¹⁵³Sm-TTHMP, Bio-distribution **CLC numbers** R979, R817, O628

1 Introduction

¹⁵³Sm-EDTMP (ethylene diamine tetramethylene phosphonate) has been developed to palliate extreme skeletal pain caused by disseminated bony metastases for many years.^[1-3] Researches showed that the excessive ligand was necessary in the preparation of ¹⁵³Sm-EDTMP to prevent its dissociation that caused higher liver uptakes.^[4,5] But the research by Luo Shunzhong also indicated that the excessive ligand decreased the absorption of ¹⁵³Sm-EDTMP on hydroxyapatite that is the main components of skeleton.^[6] It is well known that stability is a very important factor in designing new pharmaceuticals. Since base on TTHMP (triethylene tetraamine hexamethylene phosphonate) can provides four of N and twelve of O as donor atoms when it coordinates with ¹⁵³Sm³⁺, the compound ¹⁵³Sm-TTHMP will be more stable than ¹⁵³Sm-EDTMP. In this paper, we describe how TTHMP is synthesized and labeled with ¹⁵³Sm to evaluate the possibility as a bone tumor pharmaceutical.

2 Experimental

2.1 Materials

TTHMP was synthesized in our laboratory and IR, NMR and elemental analyses were carried out for the identification.

Samarium chloride solution (containing 370 MBq ¹⁵³Sm/mL) was prepared by irradiating natural samarium oxide in the research reactor of our Institute and dissolving the irradiated target (3 GBq/g Sm₂O₃) with diluted hydrogen chloride.

The other chemical agents, all were of analytic purity, were purchased commercially and not purified for use.

2.2 Preparation of ¹⁵³Sm-HHTMP

¹⁵³SmCl₃ was added to a vial containing TTHMP, and then the pH of solution was adjusted to a certain value. After sealing, the vial was placed for reaction about 30 min at room temperature. The purity of ¹⁵³Sm-TTHMP complex was measured using radiopaper chromatographic method with pyridine: ethanol:

Supported by CAEP Foundation (20020537) Received date: 2002-06-20 water (1:2:4 *V*/*V*) as developing agent. The R_f values of free ¹⁵³Sm³⁺ and ¹⁵³Sm-TTHMP were 0 and 0.7, respectively.

2.3 Stability of ¹⁵³Sm-TTHMP

The pH value of ¹⁵³Sm-TTHMP solution obtained under optimum conditions was changed to 7.0 and then the purity of ¹⁵³Sm-TTHMP complex was analyzed at different time intervals.

2.4 Rabbit imaging

About 74MBq of ¹⁵³Sm-TTHMP in ~0.5mL was injected through the ear vein of a New Zealand rabbit, and the rabbit was imaged by a SPECT instrument, provided by Elscint Israel, at 24 h post-injection.

2.5 Bio-distribution

Bio-distribution study was performed in Kunming mice weighing (18 ± 2) g. 18.5 kBq of ¹⁵³Sm-TTHMP in ~0.1mL was injected through tail vein and the mice were sacrificed at specific time intervals by cervical dislocation. The tissues and organs were excised, weighed and counted over a NaI(Tl) scintillation detector with flat geometry. For skeletal uptake studies, femur bone was chosen. The distribution of activity in different organs was calculated as percent injected dose/g.

3 Results and discussion

3.1 Influence of pH on ¹⁵³Sm-TTHMP formation

The stability of ¹⁵³Sm-complexes is affected by the hydrolysis of Sm³⁺ and the higher pH values of solution exasperate the hydrolysis. Fig.1 showed the dependence of pH on labeling yield of ¹⁵³Sm-TTHMP.

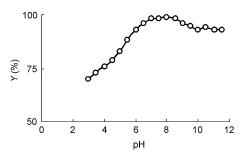


Fig.1 Effect of pH on yield with about 0.5 mg of TTHMP added.

The labeling yield increased from 70% to 98.6% when the pH was changed from 3.0 to 7.5, but the yield decreased lightly when the pH was changed from 8.5 to 11.5. So the optimum pH is 7.0 to 8.5. Though increasing ligand can widen the pH range in which satisfied labeling yield can be gotten, it is not advantageous to promote ligand concentration because of the competitive adsorption of ligand on bone.

3.2 Influence of ligand on ¹⁵³Sm-TTHMP formation

The influence of ligand on the labeling efficiency of ¹⁵³Sm-TTHMP was given in Fig. 2, from which we can find that the labeling efficiency increased with amount of TTHMP when TTHMP was less than 0.5 mg, and the labeling efficiency reached 97% when ligand was 0.5 mg.

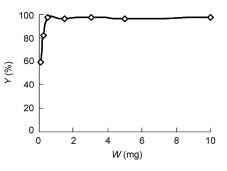


Fig.2 Effect of ligand on yield for the pH = 7.5 solution.

Based on Fig. 1 and Fig. 2, we can conclude that the most favorable pH values for forming ¹⁵³Sm-TTHMP are 7.0-8.5 when ligand is more than 0.5 mg.

3.3 The mole ratio of ¹⁵³Sm to TTHMP in ¹⁵³Sm-TTHMP

The mole ratio of ¹⁵³Sm to TTHMP in ¹⁵³Sm-TTHMP was studied by equal mole serial method. To a vial containing 12 mg of Sm, in the form of Sm³⁺, 18.5 kBq of ¹⁵³SmCl₃ and some TTHMP were added, and then the pH of solution was adjusted to 8.0. The solution was placed at room temperature about 30 min and then the labeling yield of ¹⁵³Sm-TTHMP was determined by radiopaper chromatography. The results shown in Fig.3 indicated that the labeling yield increased quickly with *n*, mole ratio of TTHMP to Sm in vial, when *n* was less than 1, and

the labeling yield was almost constant when *n* was more than 1, which implied that the mole ratio of 153 Sm to TTHMP in 153 Sm-TTHMP was 1:1.

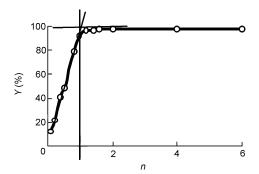


Fig.3 Mole ratio of ¹⁵³Sm to TTHMP in ¹⁵³Sm-TTHMP.

3.4 Stability of ¹⁵³Sm-TTHMP in vivo

Fig.4 showed ¹⁵³Sm-TTHMP was very stable and

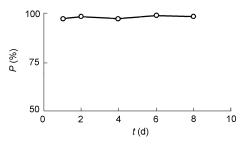
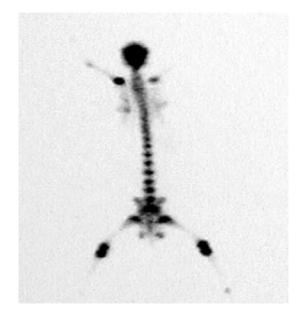


Fig.4 Stability of ¹⁵³Sm-TTHMP.


the radiochemical purity of 153 Sm-TTHMP was more than 96% in 8 d.

3.5 ¹⁵³Sm-TTHMP imaging in rabbit


For comparison, ¹⁵³Sm-EDTMP was prepared according to literature.^[1] About 74MBq of ¹⁵³Sm-TTHMP and ¹⁵³Sm-EDTMP were injected into two rabbits, respectively. The two rabbits were imaged at 24 h after injection, and Fig.5 and Fig.6 were gotten. Fig.5 indicated that ¹⁵³Sm-TTHMP was mainly adsorbed by skeleton of rabbit, and skeleton in Fig.5 was as clear as that in Fig.6.

3.6 Bio-distribution of ¹⁵³Sm-TTHMP in mice

Bio-distributions of ¹⁵³Sm-TTHMP and ¹⁵³Sm-EDTMP were compared in Table 1 and Table 2. The skeleton uptake of ¹⁵³Sm-TTHMP got the highest value at 1 h post injection and maintained relatively high value at 48 h. The compound was mainly excreted by kidney and the uptake of other organs or tissues were relatively low, and the retentates in all soft tissues were very low at 3 h post-injection. In conclusion, ¹⁵³Sm-TTHMP, displaying excellent bio- distribution, was an attractive reagent to develop bone tumor therapeutics.

Fig.5 Rabbit skeleton imaging at 24 h after injection of ¹⁵³Sm-TTHMP.

Fig.6 Rabbit skeleton imaging at 24 h after injection of ¹⁵³Sm-EDTMP.

Tissues	Bio-distributions at different time (%ID/g tissue)							
	0.5 h	1 h	3 h	6 h	24 h	48 h		
Blood	2.35±0.05	0.21±0.01	0.01±0.00	0.01±0.00	0.002±0.00	0.0018±0.00		
Heart	0.13±0.02	0.06 ± 0.04	0.02±0.01	0.02±0.01	0.03±0.00	0.03±0.01		
Liver	0.42±0.21	0.11±0.01	0.17±0.05	0.19±0.02	0.23±0.06	0.22±0.03		
Spleen	0.51±0.01	0.033±0.01	0.04 ± 0.020	0.05 ± 0.01	0.04 ± 0.00	0.03±0.00		
Kidney	2.13±0.04	1.03±0.24	0.60 ± 0.07	0.51±0.20	0.53±0.11	0.47±0.03		
Muscle	0.72 ± 0.06	0.02 ± 0.00	0.02 ± 0.00	0.04 ± 0.02	0.01±0.00	0.02±0.00		
Bone	16.70±2.36	25.31±4.52	24.08±3.69	23.31±2.98	24.95±2.77	25.22±4.65		

Table 1 Bio-distribution of 153 Sm-TTHMP in mice (n = 5)

Table 2 Bio-distribution of ¹⁵³Sm-EDTMP in mice (n = 5)

Tissues	Bio-distributions at different time (%ID /g tissue)							
1155005	0.5 h	1 h	3 h	6 h	24 h	48 h		
Blood	0.16±0.01	005±0.01	0.01±0.00	0.01±0.00	0.002±0.00	0.002±0.00		
Heart	0.17±0.06	0.07 ± 0.00	0.06±0.01	0.04±0.01	0.04 ± 0.00	0.02 ± 0.01		
Liver	0.26±0.02	0.22±0.01	0.17±0.02	0.19±0.03	0.27±0.06	0.22 ± 0.02		
Spleen	0.19±0.04	0.20±0.02	0.13±0.01	0.08 ± 0.01	0.05 ± 0.00	0.08 ± 0.00		
Kidney	2.04±0.25	1.85±0.15	0.86 ± 0.05	0.65±0.03	0.43±0.11	0.52 ± 0.03		
Muscle	0.33±0.04	0.13±0.06	0.05 ± 0.02	0.03±0.01	0.01±0.00	0.03±0.01		
Bone	18.60±2.22	23.37±3.45	24.12±3.87	25.23±4.56	23.05±4.02	24.56±3.78		

References

- 1 Luo S Z, Pu M F, Qiao J *et al*. Nucl Sci Tech, 1995, **16**(3): 146-149
- 2 Serafini A N. Q J Nucl Med, 2001, **45**(1): 91-99
- 3 Berna L, Martin F, Cunill C *et al.* Rev Esp Med Nucl, 2001, **20**(2): 130-131
- 4 Volkert W A, Deutsch E A. Advances in metals in medicine[M]. Abrams M J Eds, JAI Press, 1993, 115-149
- 5 Volkert W A, Hoffman T J. Chem Rev, 1999, **99**: 2269-2292
- 6 Luo S Z, Qiao J, Pu M F *et al.* Nucl Tech (in Chinese), 1996, **19**: 236-240