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Abstract    The Casimir effect results from the zero-point energy of vacuum. A spherical cavity can be divided into 

three regions, and we make an analysis of every region and then give a formal solution of Casimir energy. The 

zeta-function regularization is also used to dispel the divergence of the summation. At the end, we can see the Casi-

mir effect of a single sphere is included in our results. 
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1 Introduction 

The interest about Casimir effect has been stead-

ily grown due to its application in different domains of 

physics since Casimir published his famous paper.[1] 

As we know, the zero-point energies from vacuum 

is        , which gives rise to the Casimir effect, 

where the index n labels the quantum numbers of field 

modes.[2,3] It is easy to see that the summation is di-

vergent, and in order to remove the divergence we 

usually use the zeta-function regularization,[4,5] which 

is denoted by 

  

 

and the limit of regularization is s→-1.Then we can 

get the Casimir energy Ec
[5] defined by: 

 

 

where PP denotes principal parts. 

Boyer[4] has made some research on Casimir ef-

fect of a conducting spherical shell but he didn’t use 

the zeta-function regularization. In order to smooth 

the divergent series, he introduced a spherical cavity 

model which consists of a large conducting sphere of 

radius R enclosing the quantization ‘universe’. As a 

result, he got the zero-energy of a conducting spheri-

cal shell but not a spherical cavity. Our interest is to 

discuss directly the Casimir effect of a spherical cavity 

using the zeta-function regularization method. Recent- 

 

ly Jiang and his collaborators[3] calculated the Casimir 

energy of a conducting cylindrical cavity with 

zeta-function regularization. In this paper, we report 

on a neutral and perfectly conducting spherical cavi-

ty’s Casimir effect. 

2 Calculation 

2.1 Region I 

We consider Region I (see Fig.1) firstly and the 

Maxwell equations are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1  Three regions of the spherical cavity. 

And for some certain frequency , from Max-

well equations we can get Helmhotz equations: 
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if we suppose the velocity of light c = 1 and then 

k .We will look for solutions in the spherical 

coordinates of the form: 

 

 

and then we have: 

 

 

 

 

 

 

 

 
The solution has radical parts              , 

and the possible frequencies   are determined by 

boundary conditions:[2, 3, 5] 

0)(2

1





arrJr   , Dirichlet (D) condition, for 

Region I, TE-mode 

 

        , Robin (R) condition, for 

Region I, TM-mode 

 

where        is Bessel function,[6]        , and l  

is integral number. If we defineand    and    are 

the n-th nonzero solutions of the above equations sep-

arately under D and R condition, we can get: 

 

 

 

 

 

2.2 Region III 

The same calculation is also useful for Region III, 

but the radial parts now are 
1

(1)2 ( )r H r 
 , where 

(1) ( )H r   is Hankel function.[6] After taking the 

same procedure as Region I and defining ,nj  and 

,nk as the n-th nonzero solutions of (1) ( )H r  , we 

have: 

 

 

 

 

 

 

2.3 Region II 

Finally we consider the Region II. Because its 

solution can not be expressed simply by ( )J r   

or (1) ( )H r  , the solution is denoted by 
(1) (2)( ) ( )l lAh r Bh r  , where (1) ( )lh r and (2) ( )lh r  

are spherical Hankel function;[5] A and B are coeffi-

cients. We know there are equations as follows:[3, 5,6] 

 

  D condition 

 

 

 

R condition 

 

 

If these equations have solutions, the following 

formulas are necessary: 

 

 

 

 

 

 

 

 

We define that nj ,  and nk ,  are the solution of 
II,D ( )f  =0 and II,R ( )f  =0 respectively, and then: 

 
 

 

 

 

 

3 Results 

After zeta-function regularization, we can get the 
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results of Region I and Region III, and next we make an analysis of Region II.[4, 7-10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If radius of Region II b→∞, Region II will be-

come Region III; but if b→0, we believe  
II II,D II,R( ) ( ) ( )E s E s E s   →0 and now the 

spherical cavity also becomes the single sphere. So we 

have II III0 ( ) ( )E s E s  . In the end we can consider 

an e.m field in the whole space with the spherical cav-

ity acting as a neutral and perfectly conducting 

boundary: 

 

 

 

4 Conclusion 

The Casimir effect has become the subject of 

many physical fields especially with the development 

of submicroscopic physics. In this paper we introduce 

the Casimir effect of the spherical cavity and give a 

formal solution of Casimir energy. We would like to 

emphasize that there are still a lot of work to do and 

the Casimir effect is also exhibiting greater and great-

er importance on the development of modern physics. 
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