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Abstract  Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the 

spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical 

harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which 

are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un-

structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical 

results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray 

effect very well. 
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1 Introduction 

Many effective methods to solve the multi-group 

neutron transport equation have been developed in the 

recent decades. Two deterministic methods, the dis-

crete ordinate (SN) method and the spherical harmon-

ics (PN) method, are very common ones among them. 

SN method has been paid much attention and proved to 

have some intrinsic disadvantages.[1] Firstly, the ray 

effect will lead to serious distortion in non- multipli-

cation media. Secondly, the dimension of the mesh 

should be very small as N becomes large to get high 

precision result. This will induce the calculation cost 

increase greatly. Compared with SN method, the PN 

method has its special merits. Firstly, the method can 

be used in strong anisotropy scatter area easily. Sec-

ondly, the spherical harmonics method is immune 

from the ray effect. In theory, PN method can give ex-

act result as long as N is large enough. 

Many researchers have paid attention to PN 

method recently. Fletcher[2] derived the PN equations 

from the traditional first-order transport equation and 

gave an approximate method to deal with the vacuum 

boundary condition. Inanc[3] raised a modular ap-

proach PN method, in which various order of spherical 

harmonics can be used in different regions of the 

problem. Many researchers[4-6] focused their attention 

on the even- and odd-parity second-order transport 

equations. Recently, Morel[7] introduced a so-called 

self-adjoint angular flux (SAAF) equation, which is a 

second-order form of the transport equation. He 

proved that the SAAF equation is very suitable for SN 

and PN method. But all of them haven’t derived the 

general PN equation which is suitable for unstruc-

tured-meshes. 

This paper is organized as follows. In Sec. 2, we 

introduce the SAAF equation. In Sec. 3, the spherical 

harmonics method is applied into SAAF and the cou-

pled differential equation are educed. In Sec. 4, the 

finite element method is used to solve the spatial 

equations. In Sec. 5, a transport code is developed and 

the numerical results of some benchmark problems are 

given. 

2 SAAF  equation 

The traditional first order transport equation is: 

t S q       
 

      (1) 
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in which the symbols are common ones as in nuclear 

physics. 

We can use Eq.(1) to solve for   as: 

1 1( ) ( )t tS S q   
       

 
  (2) 

and then substitute Eq.(2) into the first term in Eq.(1): 

1( ) ( )t tS S   
         

   
 

1( )tq S q 
   

 
           (3) 

In order to use finite element method, every op-

erator of the equation should be self-adjoint. So Eq.(3) 

should be written as follows: 

1( ) ( )t d t dS S   
         

   
 

1( ) ( )o t d oS q S S q  
     

 
  (4) 

where Sd denotes the within-group block of the mul-

ti-group scattering matrix and So denotes the be-

tween-group block of the multi-group scattering ma-

trix. Eq.(4) is the SAAF equation, which inherits the 

advantages of the traditional second-order even- and 

odd-parity transport equation, including (a) the PN 

equation educed from them can be solved on finite 

element meshes using standard continuous finite ele-

ment discretization techniques; and (b) the resulted 

matrix is always symmetric positive-definite (SPD), 

and overcomes some disadvantages of traditional 

even- and odd-parity transport equation, including (a) 

the full angular flux is obtained when the SAAF equa-

tion is numerically solved rather than either the 

even-parity or the odd-parity component alone; (b) the 

reflective boundary conditions are much easier to im-

plement than in traditional equations; and (c) the 

SAAF equation can be solved in a void. 

3 Derivation of PN equation 

In the PN method, we can expand the angular flux 

as (take two dimension x-y geometry as example): 

 
0 0

( , , , ) (cos )

( , ) cos ( , ) sin

N n
m

n
n m

nm nm

x y P

x y m x y m

   

   
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 





(5) 

where )(cosm
nP  is the associated Legendre func-

tion. The items with n>N+1 are assumed to be zero. 

And the source item can be expanded as follows: 
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Substitute Eq.(5) and Eq.(6) in Eq.(4) and use the 

recursive relation of the associated Legendre function: 
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and the orthogonality of the associated Legendre 

function: 
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(9) 

we can obtain the general spatial dependent PN equa-

tions after a serial of lengthy and complex manipula-

tion as follows: 
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where ai (i =1~13) is coefficient varying with m and n. 

4 Finite element discretization 

The PN equations are coupled with each other 

and can’t be solved simultaneously, so an iterate 

strategy should be used to solve them. Taking the 

mn,  for unknown and the other items for constant 

(in fact, they can be initial guess or the value of the 

last iteration), we can find Eq.(10) can be written as: 

2 2

, ,

2 , ,2 2
( , )( ) ( )n m n m

t d n n ma n m F
x y

 


 
     

 

(11) 

Assume the boundary condition to be: 

a) reflective boundary 

( , ) ( , )r r    
   

  1r 


       (12) 

b) vacuum boundary 

( , ) 0r  
 

   ( ) 0n  
 

  2r 


  (13) 

Eq.(11) is a standard elliptic equation and can be 

solved by using the continuous finite element spatial 

discretization techniques on unstructured-meshes. 

Multiplied by an arbitrary function 
0 1 ( )H  , 

and integral in space, Eq.(11) becomes: 
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(14) 

Use the Gauss theorem, the first item of Eq.(14) can 

be written as: 

0 0
, ,

2 ( )d dn m n ma x y
x x y y

    
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                (15) 

From Eq.(12) we can get 
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in reflective boundary and from Eq.(13) we can get 
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in vacuum boundary approximatively. 

Substitute Eq.(16) and Eq.(17) in Eq.(15), and 

substitute Eq.(15) to Eq.(14), we can obtain: 

)(),( 00
,  FB mn            (18) 
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0 0( ) d dF F x y          (20) 

Eq.(18) is the variational form of PN equation. 

5 Numerical result 

A two-dimension multi-group transport calcula-

tion computer code, TEPFEM, was developed ac-

cording to the method described above. It can solve 

fixed source problems and eigenvalue problems in 

arbitrary geometry without constraint to the anisotro-

py of source and scattering. The element can be trian-

gle meshes or rectangle meshes. Two typical boundary 

conditions, reflective boundary condition and vacuum 

boundary condition, are taken into account by using 

approximation method given by Fletcher.[2] Several 

benchmark problems are calculated using this code. 

Three of them are given below. 

5.1 Problem 1: Natelson benchmark 

This benchmark is the one-group two-region 

system given by Natelson[8], where the system is a 3 

cm square, and there is a neutron source of strength 

Q=1 cm－2·s－1 in a 1 cm square, as shown in Fig.1. 

The cross section of regions are Σt=1.0cm－1, Σs=0.5 

cm－1, and Σt=1.0cm－1, Σs=0.25cm－1, respectively. 

The reflective boundary condition is used for all outer 

boundaries. The comparison of the calculation and 

reference results are given in Fig.2. The flux along 
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y=0 calculated by SN code TWOTRAN exhibit the 

oscillations attributed to ray effects. But the P3 result 

of TEPFEM is in good agreement with the reference 

value and avoids the ray effect. The P5 result is in ex-

cellent agreement with SK5. It demonstrates that 

spherical harmonics can avoid ray effect and give high 

precision. 

 

 

 

 

 

 

 

 

 

Fig.1  Geometry of Natelson benchmark. 

 

 

 

 

 

 

 

 

 

 

Fig.2  The flux along y=0. 

5.2 Problem 2: IAEA light water reactor 

This problem was defined by Stepanek[4] to sim-

ulate a light water reactor. It’s a one energy group, 

5-region problem with vacuum boundary condition at 

all the outer surfaces. The geometry is shown in Fig.3 

and the cross section of each region is given in Table 1. 

Table 2 gives the result calculated by TEPFEM and 

the result from Ref.[9] and Ref.[5]. It shows that the 

result calculated by TEPFEM is in good agreement 

with the other two codes except in Region 3 because 

the flux is very low. 

 

 

 

 

 

 

 

 

 

 

Fig.3  Geometry of IAEA benchmark. 

Table 1  Cross-section of IAEA benchmark 

Region t  s  f  

1 0.60 0.53 0.079 

2 0.48 0.20 0 

3 0.70 0.66 0.043 

4 0.65 0.50 0 

5 0.90 0.89 0 

 
Table 2  Average fluxes in various regions of IAEA benchmark* 

 Region 1 Region 2 Region 3 Region 4 Region 5 Keff 

SURCU[9] 0.01686 0.000125 0.000041 0.000295 0.000791 1.0083 

FELICIT[5] 0.01685 0.000127 0.000042 0.000300 0.000797 1.0069 

TEPFEM 0.01686 0.000126 0.000032 0.000296 0.000786 1.0079 

*The fluxes are normalized so that d 1
f

V   . 

5.3 Problem with unstructured-meshes 

A problem with non-regular geometry is de-

signed to show the adaptability of the code to un-

structured-meshes. It contains a fuel rod surrounded 

by light water. Triangle element is used to mesh the 

system as shown in Fig.4. The calculated flux distri-

bution is shown in Fig.5. 

6 Conclusion 

This paper derived the general equations for any 
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order of spherical harmonics on unstructured-meshes 

based on the SAAF equation. A two-dimension 

transport calculation code is programmed by using 

finite element method to discretize the space variable. 

According to the numerical results in Sec. 5, we can 

draw some conclusions: (a) Compared with SN method, 

PN method avoids ray effect well as already known. (b) 

The code TEPFEM can give high precision. (c) This 

method can be applied to unstructured-meshes. 

 

 

 

 

 

 

 

 

 

Fig.4  Unstructured mech (cm). 

 

 

 

 

 

 

 

 

 

 

Fig.5  The flux distribution of Problem 3. 

As the vacuum boundary condition was treated in 

an approximation way, the calculation result of the 

small dimension (~10 cm) problem with vacuum 

boundary condition is not very good. The flux near the 

vacuum boundary is not in good agreement. This 

problem is a hot focus in international nuclear physics 

field and there isn’t a method accepted commonly by 

now. This project plans to do some research work on it 

in the near future. 
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