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1 Introduction 

Phase transition and critical phenomenon is an 

extensively debatable subject in the natural sciences. 

Recently, the same concept was introduced into the 

astronomical objects[1] and the microscopic systems, 

such as in atomic cluster[2] and nuclei,[3] of which the 

nuclei, as a microscopic finite-size system, are at-

tracting more and more nuclear experimentalists to 

search for the liquid-gas phase transition (LGPT) and 

investigate its behavior. To date, various experimental 

evidences have cumulated which seem to be related to 

the nuclear phase transition. For instance, violent 

heavy-ion collisions break the nuclei into several in-

termediate mass fragments (IMF), which can be 

viewed as a critical phenomenon as observed in fluid, 

atomic and other systems. It prompts a possible sig-

nature on the liquid-gas phase transition in the nuclear 

system. The sudden opening of the nuclear multifrag-

mentation and vaporization[4] channels can be inter-

preted as the signature of the boundaries of phase 

mixture. In addition, the plateau of the nuclear caloric 

curve[5] in a certain excitation energy range gives a 

possible indication of a first-order phase transition[6,7] 

as predicted in the framework of statistical equilibri-

um models.[8] On the other hand, the extraction of 

critical exponents in the charge or mass distribution of 

the multifragmentation system[9] can be explained as 

an evidence of phase transition. More recently, the 

negative microcanonical heat capacity was experi-

mentally observed in nuclear fragmentation[10] which 

relates to the liquid-gas phase transition,[11] and in 

atomic cluster[12] which relates to solid to liquid phase 

transition,[13] respectively. Moreover, some evidence 

of spinodal decomposition in nuclear multifragmenta-

tion was recently obtained experimentally,[14] which 

shows the presence of liquid-gas phase coexistence 

region and gives a strong argument in favor of the 

existence of first-order liquid-gas phase transition in 

finite nuclear systems. Δ-scaling of the largest frag-

ment was also investigated recently and it shows to be 

a good probe to detect the phase change.[15] The nu-

clear Zipf 's law and multiplicity information entropy 

(H) were defined and proposed to diagnose the onset 

of liquid-gas phase transition.[16,17] Phase coexistence 

diagram was also constructed based on EOS data.[18,19] 

Meanwhile, several theoretical models have been 

developed to treat such a phase transition in the nu-

clear disassembly, e.g. percolation model, lattice gas 

model, statistical multifragmentation model and mo-

lecular dynamics model etc (e.g. see the recent review 

articles[20-22] and references therein). In this article, we 
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will introduce the recent progress on nuclear LGPT in 

experimental observation and theoretical treatment. 

The paper is organized as follows. Section 2 in-

troduces the selected models for investigating the nu-

clear liquid gas phase transition, which include the 

mean field theory, percolation model, statistical mul-

tifragmentation model, lattice gas model (LGM) and 

classical molecular dynamics (CMD) model etc. Sec-

tion 3 presents the extensive signatures for LGPT. Fi-

nally a simple summary is given in Section 4. 

2 Selected models for nuclear LGPT 

2.1 Nuclear mean field theory 

Nuclear matter is an idealized system of equal 

number of neutrons N and protons Z. The system is 

very large and the Coulomb interaction between pro-

tons is switched off. Due to the existence of Coulomb 

interaction, stable systems are scarce after mass num-

ber A= N+Z > 260, so no known nuclei approach the 

limit of nuclear matter. However, the extrapolation 

from known nuclei causes one to deduce that nuclear 

matter has density ≈0.16fm-3 and binding energy 

≈16 MeV/A. Usually the Equation of State (EOS) of 

the idealized nuclear matter is used to examine if a 

liquid-gas phase transition can be expected and at 

what temperature and density. 

The Skyrme parametrization for the interaction 

potential energy has been demonstrated[23,24] to be a 

good approximation for Hartree-Fock calculations. A 

set of isotherms for an equation of state (pressure 

versus density) corresponding to nuclear forces 

(Skyrme effective interaction) is shown in Fig.1. In 

this figure isotherms are drawn for various tempera-

tures (10, 12, 14, 15, 15.64 and 17 MeV). The pres-

sure contributed by kinetic energy was calculated in 

the finite temperature Fermi-gas model. The similarity 

with Van der Waals EOS is obvious.  With the pa-

rameters chosen here the critical temperature is 15.64 

MeV. The spinodal region ( /p   <0) can be seen 

clearly. The coexistence curve which is shown in the 

figure is obtained using a Maxwell construction.[25] 

Even though mean-field theory, as described 

above, predicts a liquid-gas phase transition picture, 

many improvements have to be made if considering 

the real heavy ion collision case. If Coulomb interac- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1  Nuclear matter equation of state with Skyrme interac-
tion with compressibility 201 MeV. In ascending order the iso-
thermals are at temperatures 10, 12, 14, 15, 15.64 (critical iso-
therm) and 17 MeV. The coexistence curve obtained from a 
Maxwell construction is shown. The vertical line is drawn at 
assumed freeze-out density 0.04 fm-3. The dot-dash line is ob-
tained by assuming that the excited system expands isentropi-
cally (see Fig.2). This is an idealization from Ref. [21]. 

tion and finite size effect are taken into account, the 

“boiling” temperature (i.e. 15.64 MeV from Fig.1) 

will come down.[26,27] For instance, in mean-field 

Thomas-Fermi theory that includes the Coulomb in-

teraction[28] a peak in specific heat at 10 MeV for 
150Sm was found. Without the Coulomb interaction, in 

bulk matter with the same isospin asymmetry as 150Sm, 

the peak is located at 13 MeV. As will be described 

later, both experimental data and more realistic mod-

els point to much lower temperature when phase 

change occurs. 

2.2 The percolation model 

The percolation has been extensively studied in 

condensed matter physics.[29] The applications in nu-

clear physics were made by Bauer et al[30,31] and 

Campi et al.[32,33]  

There are two types of percolation models: site 

percolation and bond percolation. For applications to 

nuclear physics, bond percolation was used. In bond 

percolation there are N lattice sites. One uses a 

three-dimensional cubic lattice. The number of nucle-
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ons is also N. Each lattice site contains one nucleon 

which is not distinguished between neutrons and pro-

tons. The crucial parameter is the bonding probability 

p whose value can vary between 0 and 1. The proba-

bility that two nearest neighboring nucleons will be 

part of a cluster is given by the value of p. If p=0 (e.g. 

in the case of high excitation energy) all N3 nucleons 

will emerge as singles. If p=1, the nucleons stay to-

gether as one nucleus (e.g. in the case of low excita-

tion energy, not enough to break up the nucleus). For 

the values of p between the two extremes Monte- 

Carlo sampling is needed to generate events and de-

termine in each event the occurrence of clusters of 

different sizes. There is a phase transition in this mod-

el. One can define a percolating cluster; this is a clus-

ter, which, if it exists, spans the walls, i.e. connects 

opposite walls through an unbroken cluster. For N 

very large, this appears at the value of p=0.2488. This 

value of p will be labelled by pc. The order parameter 

in this model is the probability that an arbitrary site 

(equivalently an arbitrary nucleon) is part of this per-

colating cluster. Below pc, this is zero since there is no 

percolating cluster. It starts from zero at pc and con-

tinuously moves towards the value 1 as the value of p 

is increased. The phase transition in this model is con-

tinuous and not a first-order phase transition. Near 

critical points, one can define critical exponents and 

try to evaluate them from experiment. We will see 

later that even though we now regard the phase transi-

tion in nuclear heavy ion collisions to be first order, it 

is meaningful to try to measure certain critical expo-

nents. 

2.3 Statistical multifragmentation model 

Statistical multifragmentation models have been 

very successful in explaining processes in heavy-ion 

collisions. These models define a freeze-out volume. 

At this volume an equilibrium statistical mechanics 

calculation is done. However, these statistical calcula-

tions do not start from a fundamental two-body inter-

action or even a simplified schematic two-body inter-

action. Instead, the inputs are the properties of the 

composites (which appear as bound objects because of 

the fundamental two-body interaction); their binding 

energies and the excited states. Their populations are 

solely dictated by phase-space. This is very similar to 

chemical equilibrium between perfect gases as, for 

example, discussed in [25]. The only interaction be-

tween composites is that they can not overlap with 

each other in the configuration space. Coulomb inter-

action between composites can be taken into account 

in different stages of approximation. These models 

have the virtue that they can be used to calculate data 

for many experiments whether these experiments re-

late to phase transition or not. The Copenhagen model, 

a statistical multifragmentation model abbreviated 

SMM, has become the “shell-model” code for inter-

mediate energy heavy ion data. An excellent review of 

this model exists.[34] The Berlin Model, a microca-

nonical multifragmentation model, usually abbreviat-

ed MMMC, has also been used to fit experimental 

data.[35] Some other references for microcanonical 

simulation of similar physics are [36]~[38]. While 

there have been tremendous improvements in tech-

niques and details, the roots of such models for 

heavy-ion collisions go back 1970s.[39] 

With some simplifications, the model of compo-

sites within the freeze-out volume at a given tempera-

ture can be exactly solved, as phase transition aspects 

are easily studied in the model. It should be mentioned 

that a peak in the specific heat at about 5 MeV tem-

perature was predicted in the model well before ex-

periments were done.[40] 

2.4 Lattice gas model and molecular dynamics 

model  

The lattice gas model of Lee and Yang,[41] where 

the grand canonical partition function of a gas with 

one type of atoms is mapped into the canonical en-

semble of an Ising model for spin 1/2 particles, has 

successfully described the liquid-gas phase transition 

for the atomic system. The same model has already 

been applied to the microscopic nuclear system, e.g. 

see the papers [42]~[48]. 

In the LGM, A (= N + Z) nucleons with an occu-

pation number s, which is defined as the ‘spin’ s=1(-1) 

for a proton (neutron) or s=0 for a vacancy, are placed 

in the L sites of a three-dimensional cubic lattice. 

Each cubic lattice has a size 1.0/0= 6.25 fm3 and can, 

at most, be occupied by a single nucleon, where 

0=0.16 fm-3 is the normal nucleon density. Nucleons 

in the nearest neighboring sites interact with an energy 
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i js s i js s . The Hamiltonian of the system is written as 

 

(1) 
 

The interaction constant 
i js s is related to the binding 

energy of the nuclei. In order to incorporate the iso-

spin effect in the LGM (thereafter, we will called 

“I-LGM”), the short-range interaction constant 
i js s is 

chosen to be different between the nearest neighboring 

like nucleons and unlike nucleons,  
 

 
(2) 

which indicates the repulsion between the near-

est-neighboring like nucleons and attraction between 

the nearest-neighboring unlike nucleons. This kind of 

isospin-dependent interaction incorporates, to a cer-

tain extent, the Pauli exclusion principle and effec-

tively avoids producing unreasonable clusters, such as 

di-proton and di-neutron clusters etc. The disassembly 

of the system is calculated at an assumed ‘freeze-out’ 

density f = (A/L)0, beyond f  nucleons are too far 

apart to interact. 

In this model, (N+Z) nucleons are put in L sites 

by Monte Carlo sampling using the canonical Me-

tropolis algorithm.[49] Various observables based on 

phase space can be calculated in a straightforward 

fashion for each event. The cluster distribution in 

LGM can be obtained by using the rule that two nu-

cleons are part of the same cluster if their relative ki-

netic energy is insufficient to overcome the attractive 

bond:[44] 

(3) 
 

This method has been proved to be similar to the 

so-called Coniglio-Klein prescription in condensed 

matter physics[50] and was shown to be valid in LGM. 

Since LGM is a model of the nearest-neighboring 

interaction, a long-range Coulomb force is not amena-

ble to lattice gas type calculation. Pan and Das Gup-

ta[41,43] provide a prescription, based on simple physi-

cal reasoning, to decide if two nucleons, occupying 

neighboring sites form part of the same cluster or 

not.[51] They first tried to map the LGM calculation to 

a classical molecular dynamics type prediction, both 

first carried out without any Coulomb interaction. If 

the calculations match quite faithfully, then they can 

study the effects of the Coulomb interaction by adding 

that to the molecular dynamics calculation. The start-

ing point of CMD is a thermally equilibrated source 

which has been produced by the above I-LGM: i.e. the 

nucleons are initialized at their lattice sites with Me-

tropolis sampling and have their initial momenta with 

Maxwell-Boltzmann sampling. From this starting 

point we switch the calculation to CMD evolution 

under the influence of a chosen force. Note that in this 

case f  is, strictly speaking, not a ‘freeze-out’ density 

for molecular dynamics calculation but merely defines 

the starting point for time evolution. However, since 

classical evolution of a many particle system is en-

tirely deterministic and the initialization does have in 

it all the information of the asymptotic cluster distri-

bution, we continue to call f  the ‘freeze-out’ density. 

The form of the force in the CMD is also chosen 

to be isospin dependent in order to compare with the 

results of I-LGM. The potential for unlike nucleons is 

expressed as[43,52] 

 

 

 

(4) 

where r0=1.842 fm is the distance between the centers 

of two adjacent cubes so that 0=1/r0
3=0.16 fm-3. The 

parameters of the potentials are p = 2, q = 1, a = 1.3, B 

=0.924 and C = 1966 MeV. With these parameters the 

potential is minimum at r0 with the value -5.33 MeV 

and zero when the nucleons are more than 1.3r0 apart 

and strongly repulsive when r is significantly less than 

0. We now turn to the nuclear potential between like 

nucleons. Although we take pp=nn=0 in I-LGM, the 

fact that we do not put two like nucleons in the same 

cube suggests that there is short-range repulsion be-

tween them. We have taken the nuclear force between 

two like nucleons to be the same expressions as above 

+5.33 MeV up to r = 1.842 fm and zero afterwards,  

 

 

(5) 

Fig.2 shows the above potential np or pp.[53] This 

potential form automatically cuts off at r/r0= a (Eq.4) 

or r/r0=1 (Eq.5) without discontinuities in any r deriv-

atives, which is a distinct advantage in any molecular 

dynamics simulation application. 
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Fig.2  Molecular dynamics potential for like nucleon pair (pp) 
and unlike nucleon pair (np). From Ref. [53]. 

The system evolves with the above potential. The 

time evolution equations for each nucleon are, as usu-

al, given by  

 

 

(6) 

Numerically, the particles are propagated in the phase 

space by a well-known Verlet algorithm,[54] one of the 

finite-difference methods in molecular dynamics with 

continuous potentials. At asymptotic times, for in-

stance, the original blob of matter expands to 64 times 

its volume in the initialization, the clusters are easily 

recognized: nucleons which stay together after an ar-

bitrarily long time are part of the same cluster. The 

observables based on cluster distribution in both mod-

els are now compared while they are also compared 

by switching on/off the Coulomb interaction within 

the molecular dynamics. 

3 Signatures of the nuclear liquid gas 
phase transition 

3.1 Fisher droplet model: power law of 

charge/mass distribution 

The Fisher droplet model has been extensively 

applied to the analysis of multifragmentation since the 

pioneering experiments on high energy proton-nucleus 

collisions by the Purdue group.[3,55,56] Relative yields 

of fragments with 3≤Z≤14 could be well described 

by a power law dependence A- and suggested that this 

might reflect the disassembly of a system whose exci-

tation energy was comparable to its total binding en-

ergy.[55] The extracted value of power-law exponent 

was 2≤≤3, which is in a reasonable range for criti-

cal behavior.[57] This success of this approach sug-

gested that the multi-fragmentation of nuclei might be 

analogous to a continuous liquid to gas phase transi-

tion observed in more common fluids. 

In the Fisher droplet model the fragment mass 

distribution may be represented as 
 

(7) 

where Y0,X and Y are parameters. However, at the 

critical point X=1 and Y=1 and the cluster distribution 

is given by a pure power law 

 

(8) 

The model predicts a critical exponent  2.21. 

In this paper, we will use some results which 

were recently obtained in Cyclotron Institute, Texas 

A&M University to show some signatures of nuclear 

LGPT.[58] Of course, many other works are also in-

cluded in this review article. For the former work, we 

used Ar + Ni reaction at 47 MeV/nucleon and recon-

structed the quasi-projectile (QP) using a new method 

which is based on three source fits and the Monte 

Carlo sampling for the assignment of QP.[59] Well de-

fined QP sources have been obtained and their disas-

sembly features have been analyzed. For simplicity, 

we call experimental data of this work as TAMU da-

ta.[58] 

Firstly, in Fig.3 we present, for the QP from the 

reactions of 40Ar+58Ni, yield distributions, dN/dZ, ob-

served for nine different excitation energy (E*/A) in-

tervals from TAMU data. 

At low excitation energy a large Z residue always 

remains, i.e. the nucleus is basically in the liquid 

phase accompanied by some evaporated light particles. 

When E*/A reaches ~6.0 MeV/nucleon, this residue is 

much less prominent. As E*/A continues to increase, 

the charge distributions become steeper, which indi-

cates that the system tends to vaporize. To quantita-

tively pin down the possible phase transition point, we 

use a power law fit to the QP charge distribution in the 

range of Z=2~7 to extract the effective Fisher-law pa-

rameter eff by 
 

(9) 

The open squares of Fig.4 show eff vs excitation en-

ergy, a minimum with eff ~2.3 is seen to occur in the 
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Fig.3  Charge distribution of QP in different E*/A (in unit of 
MeV/nucleon) window. From TAMU data.[58] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  eff (open squares) and eff (solid circles) as a function 
of excitation energy. From TAMU data.[58] 

E*/A range of 5 to 6 MeV/nucleon. eff ~2.3 is close to 

the critical exponent of the liquid gas phase transition 

universality class as predicted by Fisher's droplet 

model.[57] The observed minimum is rather broad. 

In a lattice gas model investigation of scaling and 

apparent critical behavior, Gulminelli et al. have 

pointed out that, in finite systems, the distribution of 

the maximum size cluster, i.e. the liquid, might over-

lap with the gas cluster distribution in such a manner 

as to mimic the critical power law behavior with 

eff ~2.2.[60] They further note, however, that at that 

point the scaling laws are satisfied, which indicates a 

potentially more fundamental reason for the observa-

tion of the power law distribution.[60] Assuming that 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5  The same as Fig.3 but the heaviest cluster is excluded 
on the event-by-event basis. From TAMU data.[58] 

the heaviest cluster in each event represents the liquid 

phase, we have attempted to isolate the gas phase by 

event-by-event removal of the heaviest cluster from 

the charge distributions. We find that the resultant dis-

tributions are better described as exponential as seen 

in Fig.5. 

The fitting parameter eff of this exponential form 

exp(-eff Z ' ) was derived and is plotted against excita-

tion energy in Fig.4. A minimum is seen in the same 

region where eff shows a minimum. The minima of 

eff and eff indicate the onset of phase change. 

3.2 Cluster emission rate 

In heavy ion collisions, the emission of particles 

is an important observable. In the framework of the 

isospin dependent lattice gas model (I-LGM) and 

classical molecular dynamics (I-CMD), we studied the 

relationship of particle emission and liquid gas phase 

transition. Fig.6 shows that the mean multiplicities 

between emitted neutrons, protons, charged particles 

(CP) and intermediate mass fragments (IMF, i.e. 

3≤Z≤20) and the mean mass for the largest fragment 

evolve with temperature at different ‘freeze-out’ den-

sities f=0.0970, 0.180, 0.380 and 0.600 for 129Xe, 

in the I-CMD calculation.[53] At a fixed ‘freeze-out’ 

density, average neutron multiplicity (Nn), proton mul-

tiplicity (Np), charged particle multiplicity (Ncp) and 

the mean mass for the largest fragment (Amax) display 

monotonous increase or decrease with temperature as 
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Fig.6  Average multiplicity of the emitted neutrons Nn (a), 
protons Np (b), charged particles Ncp (c) and the mean mass of 
the largest fragment Amax (d) as a function of temperature in 
different ‘freeze-out’ density in the framework of I-CMD. The 
symbols are illustrated in the right bottom corner. From 
Ref.[53]. 

 
expected. With decreasing ‘freeze-out’ density, Np, Nn 

and Ncp increase, since larger space separation among 

nucleons at smaller ‘freeze-out’ density makes the 

clusters less bound and therefore the sizes of free 

clusters decrease and then the cluster multiplicities 

increase. 

It seems difficult to discover the possibility of 

phase transition of nuclei if we only see these mean 

quantities as shown above. However, when we focus 

on their slopes to temperature (Fig.7), sharp changes 

are observed at nearly the same temperature at each 

fixed ‘freeze-out’ density, for instance, namely around 

3, 3.5, 4.5, 5 MeV at f =0.0970, 0.180, 0.380 and 

0.600, respectively. At such a transition point, (1) the 

multiplicities of emitted clusters increase rapidly and 

after that the emission rate slows down; and (2) the 

decrease in the largest fragment size reaches a valley 

for such a finite system. Physically, the largest frag-

ment is simply related to the order parameter l-g 

(the difference of density in nuclear ‘liquid’ and ‘gas’ 

phases). In infinite matter, the infinite cluster exists 

only on the ‘liquid’ side of the critical point. In finite 

matter, the largest cluster is present on both sides of 

the phase transition point. In this calculation, a valley 

for the slope of Amax to temperature may correspond to 

a sudden disappearance of infinite cluster (‘bulk liq-

uid’) near the phase transition temperature. It is not 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7  The same as in Fig.6, but for their slopes with temper-
ature. The symbols are the same as in Fig.6. From Ref.[53]. 

the occasional production of such waves of the slopes; 

it should reflect the onset of phase transition there. 

This idea is supported by surveying the other phase 

transition observables, such as the effective power law 

parameter eff from the mass or charge distribution of 

fragment and the information entropy H of event mul-

tiplicity distribution.[16] 

3.3 Rise and fall of multi-fragment emission 

Copious emission of intermediate mass frag-

ments is one predicted consequence of the liquid-gas 

phase transition of nuclear matter, by both statistical 

models and transport models. At low excitation energy, 

few fragments are “evaporated” from the liquid while 

at very high excitation energy, the liquid “vaporizes” 

to produce a nucleon gas. The “rise and fall” of IMF 

multiplicities has been observed in both central and 

peripheral collisions. For instance, for central colli-

sions, maximum fragment productions occur around 

incident energy of 100A MeV for the Kr+Au reac-

tion.[61-63] Fragment multiplicities increase to a maxi-

mum with increasing excitation energy. The fragment 

production then declines and “vaporizes” completely 

into nucleons and light particles. 

Similar to the particle emission, we investigated 

the IMF emission. Here IMF is defined as 3≤Z≤20. 

Fig.8 shows the mean multiplicity of IMF of 129Xe as 

a function of temperature in different freeze-out densi-

ties in I-CMD calculation. The multiplicity (Nimf) of 

IMF shows a rise and fall with temperature,[53] when 
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Fig.8  Average multiplicity of IMF as a function of tempera-
ture in different ‘freeze-out’ density in the framework of 
I-CMD. The symbols are the same as in Fig.6. From Ref.[53]. 

the system probably crosses the phase transition 

boundary. The peak position of Nimf is close to the 

turning point of the emission rate as Fig.7 shows. This 

kind of onset of the multifragments reflects the phase 

change of nuclei. 

In our earlier work with the quantum molecular 

dynamics model,[64] we also investigated the IMF 

production as a function of beam energy. The similar 

rise and fall has been observed. For Ar+Al system in 

central collisions, a peak of IMF production is ob-

served around 65 MeV/nucleon. Combined with other 

observables, such as effective  and  parameters of 

charge distributions, the fluctuation analysis (Campi 

plots, see below) illustrates that the rise and fall of 

IMF production correspond to liquid gas phase transi-

tion.[64] 

3.4 Fragment hierarchical distribution: Zipf 

plot and Zipf law 

In addition to the fragment emission and its spec-

tra, observables revealing some particular topological 

structure may also reflect the critical behavior for a 

finite system. In this section we discuss two observa-

bles: nuclear Zipf law and the correlation between the 

largest two fragments. 

Recently, Ma proposed measurements of the 

fragment hierarchy distribution as a tool to search for 

the liquid gas phase transition in a finite nuclear sys-

tem with help of lattice gas model and classical mo-

lecular dynamics model.[16,65] The fragment hierarchy 

distribution can be defined by the so-called Zipf plot, 

i.e. a plot of the relationship between mean sizes of 

fragments which are rank-ordered in size, i.e. largest, 

second largest, etc. and their rank.[16] Originally the 

Zipf plot was used to analyze the hierarchy of usage 

of words in a language,[66] i.e. the relative population 

of words ranging from the word used most frequently 

to the word used least frequently. The integer rank was 

defined starting from 1 for the most probable word 

and continuing to the least probable word. Surprising-

ly, a linear relationship between the frequency and the 

order of words was found. Later, many applications of 

this relationship were made in a broad variety of areas, 

such as population distributions, sand-pile avalanches, 

the size distribution of cities, the distribution in 

strengths of earthquakes, the genetic sequence and the 

market distribution of sizes of firms, etc. It has been 

suggested that the existence of very similar linear hi-

erarchy distributions in these very different fields in-

dicates that Zipf 's law is a reflection of self-organized 

criticality.[67] 

In such an analysis, the cluster size is employed 

as the variable to make a Zipf-type plot, and the re-

sultant distributions are fitted with a power law,  
 

(10) 

where is the Zipf 's law parameter. Fig.9 shows the 

Zipf-type plots for the disassembly of Xe with I-LGM 

calculations. The fit parameter  was extracted in each 

temperature. When ~1, Zipf 's law is satisfied. In this 

case, the mean size of the second largest fragment is 

1/2 of that of the largest fragment. That of the third 

largest fragment is 1/3 of the largest fragment, etc. 

The upper panels of Fig.10 shows the fitted  param-

eters as a function of temperature. The lower panels 

show their 2/ndf, the minimum indicates the best fit 

for power law when Zipf law is satisfied. To further 

approve the relationship of Zipf law with the liquid 

gas phase transition, we show the results of some oth-

er physical observables, namely the effective pow-

er-law parameter, , the second moment of the cluster 

distribution, S2, and the multiplicity of intermediate 

mass fragments, Nimf, for the disassembly of 129Xe: 

Fig.11. These observables were shown to be good in-

dicators of a liquid gas phase transition, as shown in 

the above sections and Ref. [68]. The extreme values 

of , Nimf and S2 occur at the same temperature, indi-

cating the onset of the phase transition, which is con-
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Fig.9  Zipf plots for T=3~7 MeV with LGM calulation. The 
dots are data and the lines are power-law fits (Eq.10). From 
Ref.[65]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10  The slope parameter of the relation An to n (upper 
panel) and the 2/ndf with the fit of Zipf’s law (lower panel) as 
a function of temperature. Left panel is the LGM results with 
differentf (open squares: 0.18solid squares: 0.380 and 
squares with cross: 0.60 ) and right panel is the comparisons 
of MD (open circles: MD with Coulomb force and circles with 
cross: MD without Coulomb) to LGM (solid squares) with 
0.38 .From Ref. [16]. 

holds (=1), for each calculation case. For the LGM 

case, the phase transition temperature increases with 

the freeze-out density; for the MD (i.e. CMD) case, a 

slight small transition temperature is obtained when 

Coulomb force is ignored. It becomes much lower in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11  The effective power-law parameter, , the second 
moment of the cluster distribution, S2, and the multiplicity of 
intermediate mass fragments, Nimf, as a function of temperature 
for the disassembly of 129Xe. Left panel is the LGM results 
with differentf and right panel is the comparison of MD to 
LGM with 0.38 From Ref.[16]. 
 

case of Coulomb interaction due to its long range re-

pulsion. 

Now we return to the TAMU data.[58] As shown 

in Fig.4, the region of 5~6 MeV/nucleon excitation 

energy is thought to be related to the liquid gas phase 

transition. The significance of this region in our data is 

further indicated by a Zipf 's law analysis. Fig.12 

shows the Zipf plots in nine excitation energy win-

dows. The Zipf-law parameters  are also extracted 

and shown in Fig.13. This rank ordering of the proba-

bility observation of fragments of a given atomic 

number, from the largest to the smallest, does indeed 

lead to a Zipf 's law parameter ~1 in the 5~6 

MeV/nucleon range. 

In a recent analysis for multifragment emission 

for CERN EMU13 data, Dabrowska et al. analyze 

emulsion data for 158 A GeV Pb-Pb and Pb-Plastic 

collisions and tested our Zipf law.[69] They found that 

their data are roughly consistent with the nuclear Zipf 

law. This may be interpretated as an evidence for the 

existence of the critical temperature associated with a 

liquid gas phase transition.[69] More recently, we ap-

plied the Zipf law to the mesons and baryons which 
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Fig.12  Zipf plots in nine different excitation energy bins. The 
dots are data and the lines are power-law fits (Eq.10). From 
TAMU data.[58] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13  Zipf parameter as a function of excitation energy in 
TAMU data.[58] 

are produced in the relativistic heavy ion collision. 

Some preliminary results are also obtained.[70] 

In a related observation which is consistent with 

the formulation of Zipf 's law, percolation model cal-  
culations[71] suggest that the ratio           reaches  
 
0.5 around the phase separation point. Here Z2max is 

the atomic number of the second heaviest fragment in 

each event. Fig.14 shows Sp versus E*/A for TAMU 

data. Sp=0.5 near 5.5 MeV/nucleon and exhibits es-

sentially linear behavior (with two different slopes) 

above and below that point, which also supports the 

onset of a phase change around that point. 

If we make a plot for the average value of Z2max 

vs Zmax in the nine excitation energy windows, we 

immediately see that a transition occurs between 5~6 

MeV/nucleon (Fig.15). Below 5 MeV/nucleon of ex-

citation energy, <Z2max> increases with increasing 

<Zmax>. In this energy zone, the fragmentation is ba-

sically dominated by evaporation and sequential decay 

is important. But above 6 MeV/nucleon excitation 

energy, <Z2max> decreases with increasing <Zmax>. In 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14  The phase separation parameter as a function of exci-
tation energy in TAMU data.[58] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15  <Z2max> as a function of <Zmax> in TAMU data.[58] The 
mean excitation energy is also shown. 
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this region of excitation, the nucleus is essentially 

fully vaporized and each cluster shows a similar be-

havior. 

In relating theoretical calculation with I-CMD for 

A≌36,[58] we obtain the very similar pictures as the 

data. Fig.16 shows the scattering plots for Z2max and 

Zmax for temperature T = 3 to 8 MeV. An obvious tran-

sition of the behavior occurs around 5.0 MeV, namely 

from the negative correlation to positive correlation, 

which inflects the phase transition point.[72] Of course, 

in I-CMD simulation, the input parameter is tempera-

ture instead of the excitation energy which can be de-

termined from the data. However, the qualitative re-

sults are very similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16  The scattering plots for Z2max and Zmax in nine different 
temperature windows in I-CMD simulation. The y-axis is for 
Z2max and x-axis for Zmax. From Ref.[58]. 

3.5 Bimodality 

Another proposed test of phase separation is bi-

modality which was suggested in [73]. As has been 

noted,[74] this approach generalizes definitions based 

on curvature anomalies of any thermodynamic poten-

tial as a function of an observable which can then be 

seen as an order parameter. It interprets a bimodality 

of the event distribution as coexistence, each compo-

nent representing a different phase. It provides a defi-

nition of an order parameter as the best variable to 

separate the two maxima of the distribution. In this 

framework when a nuclear system is in the coexist-

ence region, the probability distribution of the order 

parameter is bimodal. 

In analyses of INDRA data,[74] the bimodality 

parameter is defined as 

 

(11) 

 

P was chosen as a sorting parameter which may be 

connected with the density difference of the two 

phases (l-g), which is the order parameter for the 

liquid gas phase transition. Fig.17 shows the event 

distributions observed at different incident energies. 

These results show that none of the distributions is 

Gaussian, which would indicate a pure phase, but the 

gas phase part is dominant above 45 MeV/nucleon, 

while the liquid part is more important below 32 

MeV/nucleon. Two components are roughly equal 

around 39 MeV/nucleon. The observed trends are rel-

evant to the liquid gas phase transition. 

 

 

 

 

 

 

 

 

 

Fig.17  Event distributions observed at different incident en-
ergies. Points located at the values -1 are divided by 10. See 
text for the variable used for event distribution. From INDRA 
data.[74] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.18  The average value of bimodality parameter as a func-
tion of excitation energy. From TAMU data.[58] 
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For our TAMU data for very light system, if we 

consider the clusters with Z≤3 as a gas and the clus-

ters with Z≥4 as a liquid, a parameter characterizing 

the bimodal nature of the distribution can be defined  

as 

 

(12) 

 

Fig.18 shows the mean value of P as a function of 

E*/A. Here again, the slope shows a distinct change at 

E*/A = 5~6 MeV where P=0, i.e. the point of equal 

distribution of Z in the two phases. 

3.6 Multiplicity information entropy 

The concept of multiplicity information entropy 

has been also introduced into the diagnosis of nuclear 

liquid gas phase transition recently.[16] Originally, the 

information entropy was defined by Shannon in in-

formation theory[75] and it measures the “amount of 

information” which is contained in messages sent 

along a transmission line. It can be expressed as  

 

(13) 

where pi is a normalized probability, and 1i i
p  . 

Jaynes proposed that a very general technique for 

discovering the least biased distribution of the pi con-

sists in the maximization of the Shannon H entropy, 

subject to whatever constraints on pi are appropriate to 

the particular situation. The maximization of H was 

thus put forward as a general principle of statistical 

inference-one which could be applied to a wide varie-

ty of problems in economics, engineering and many 

other fields, such as quantum phenomena.[75] In high 

energy hadron collisions, multiparticle production 

proceeds on the maximum stochasticity, i.e. they 

should obey the maximum entropy principle. This 

kind of stochasticity can be also quantified via the 

information entropy which has been shown to be a 

good tool to measure chaoticity in hadron decaying 

branching process.[76] In different physical conditions, 

information entropy can be expressed with different 

stochastic variables. In this work on HIC, we define pi 

as the event probability of having “i” particles pro-

duced, i.e. {pi} is the normalized probability distribu-

tion of total multiplicity, the sum is taken over whole 

{pi} distribution. This emphasis is on the event space 

rather than the phase space. As shown below this kind 

of information entropy can be taken as a method to 

determine nuclear liquid gas phase transition. 

Fig.19 shows the information entropy for disas-

sembly of Xe.[16] The information entropy exhibits a 

rise and fall with temperature, which is similar to the 

behaviors of Nimf and S2 (see Fig.11). The tempera-

tures extracted from the peak values of H are con-

sistent with the transition temperatures in Fig.1, indi-

cating that information entropy ought to be a good 

diagnosis of phase transition. Physically, the maxi-

mum of H reflects the largest fluctuation of the multi-

plicity probability distribution in the phase transition 

point. In this case it is the most difficult to predict how 

many clusters will be produced in each event, i.e. the 

disorder (entropy) of information is the largest. Gen-

erally speaking, the larger the dispersal of multiplicity 

probability distribution, the higher the information 

entropy and then the disorder of system in the event 

topology. One should make a careful distinction be-

tween this information entropy, on the one hand, and 

the original thermodynamic entropy, on the other 

hand.[75] The latter generally illustrates the heat disor-

der in momentum space rather than event space and it 

always increases with temperature. 

More recently, we have applied the same multi-

plicity information entropy to the relativistic heavy 

ion collision already.[77] 

 

 

 

 

 

 

 

Fig.19  Information entropy H as a function of temperature. 
The symbols are the same as in Fig.11. From Ref.[16]. 
 

3.7 Campi plots 

One of the well known characteristics of the sys-

tems undergoing a continuous phase transition is the 

occurrence of the largest fluctuations. These large 

fluctuations in cluster size and density of the system 

arise because of the disappearance of the latent heat at 

the critical point. In macroscopic systems such be-
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havior gives rise to the phenomenon of critical opal-

escence.[78] 

Campi suggested the use of event-by-event scat-

ter plots of the natural log of the size of the largest 

cluster (here lnZmax) versus the natural log of the nor-

malized second moment (lnS2) of the cluster distribu-

tion with the heaviest fragment removed,  

 

(14) 

 

where Zi is the charge number of QP clusters and ni(Zi) 

is the multiplicity of the cluster Zi. As a means to ob-

serve the region of the largest fluctuations, such plots 

have proved to be very instructive in previous search-

es for critical behavior.[32] 

In Fig.20 we present such plots for the nine se-

lected excitation energy bins in our TAMU data. 

Again, in the low excitation energy bins of E*/A≤3.7 

MeV/nucleon, only the upper (liquid phase) branch 

exists, while at E*/A≥7.5 MeV/nucleon, only the 

lower Zmax (gas phase) branch is strongly dominant. 

However, in the region of intermediate E*/A of 4.6~ 

6.5 MeV/nucleon, there appears to be a significant 

transition from the liquid dominated branch to the va-

por branch, indicating that the region of maximal 

fluctuations signaling a transition between the two 

phases is to be found in that range. 

As the Zmax-Z2max correlation shown above, we 

obtain the similar Campi’s plot with I-CMD simula- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.20  The Campi plot for different excitation energy win-
dows. From TAMU data.[58] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.21  The Campi’s plots for in nine different temperature 
windows in I-CMD simulation. The y-axis is for Zmax and 
x-axis for S2. From Ref.[58]. 

tion.[58] Fig.21 shows such plot. Similarly, the same 

transition is observed around 5.0 MeV indicating the 

onset of phase transition. 

Using the general definition of the kth moment as 

 

(15) 

 

Campi also suggested that the quantity, 2, defined as 

 

(16) 

where M0, M1 and M2, the zeroth moment, first mo-

ment and second moment of the charge distribution, 

could be employed to search for the critical region. In 

such an analysis, the position of the maximum 2 val-

ue is expected to define the critical point, i.e. the crit-

ical excitation energy *

cE , at which the fluctuations in 

fragment sizes are the largest. 

The excitation energy dependence of the average 

values of 2 obtained in an event-by-event analysis of 

our data is shown in Fig.22. 2 reaches its maximum in 

the 5~6 MeV excitation energy range. In contrast to 

observations for heavier systems,[79] there is no well 

defined peak in 2 for our very light system and 2 is 

relatively constant at higher excitation energies. We 

note also that 2 value is lower than 2 which is the 

expected smallest peak value for critical behavior if 

the system is large enough. However, 3D percolation 

studies indicate that finite size effects can lead to a 
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decrease of 2 with system size.[80,81] For a percolation 

system with 64 sites, peaks in 2 under two are ob-

served. Therefore, the lone criterion 2>2 is not suffi-

cient to discriminate whether or not the critical point 

is reached. To carry out further quantitative explora-

tions of maximal fluctuations we have investigated 

several other proposed observables expected to be 

related to fluctuations and to signal critical behavior. 

These are discussed below. 

 

 

 

 

 

 

Fig.22  2 of the QP system formed in Ar+Ni as a function of 
excitation energy. From TAMU data.[58] 

3.8 Fluctuations in the distribution of Zmax 

It is supposed that the cluster size distributions 

should manifest the maximum fluctuations around the 

critical point where the correlation length diverges.  

As a result of constraints placed by mass conservation, 

the size of the largest cluster should then also show 

large fluctuations.[78] Thus, it has been suggested that 

a possible signal of critical behavior is the fluctuation 

in the size of the maximum fragment.[32] Recently, 

Dorso et al. employed a molecular dynamics model to 

investigate fluctuations in the normalized variance 

(NVZ),  

 

(17) 

of the atomic number of the heaviest fragment 

(Zmax).[82] They found that this quantity can indeed 

display a maximum in the critical region. 

In their work, Dorso et al. performed calculations 

of the NVZ on two simple systems, one of which 

should not exhibit critical behavior and the other does. 

For the first they used a random partition model, in 

which the population of different mass numbers is 

obtained by randomly choosing values of A following 

a previously prescribed mass distribution.[83] In this 

case the fluctuations in the populations are of statisti-

cal origin or are related to the fact that the total mass 

Atot is fixed. No signal of criticality is to be expected. 

In the second case they explored the disassembly of 

systems of the same size employing a finite lattice 

bond percolation model. Such a case is known to dis-

play true critical behavior. They found that NVZ peaks 

close to the critical point in the percolation model 

calculation but shows no such peak in the random par-

tition model calculation. This indicates that the mass 

conservation criterion, by itself, can not induce the 

peak of NVZ. The details can be found in [82]. 

For our TAMU data we plot the normalized var-

iance of Zmax as a function of excitation energy in 

Fig.23. A clear maximum, characterizing the largest 

fluctuation of this order parameter, is seen, which is 

located around E*/A=5~6 MeV/nucleon. 

 

 

 

 

 

 

Fig.23  NVZ of the QP system formed in Ar+Ni as a function 
of excitation energy in our TAMU data.[58] 

3.9 Fluctuations in the distribution of total ki-

netic energy and negative heat capacity 

The system we have studied is a hot system. If 

critical behavior occurs, it should also be reflected in 

large thermal fluctuations. Using a definition similar 

to that of the normalized variance of Zmax, we can de-

fine the normalized variance of total kinetic energy 

per nucleon,  

 

(18) 

where tot

kin /E A  is the total kinetic energy per nucleon 

and tot
kin /Ε A

  is its width. Fig.24 shows the NVE as a 

function of excitation energy in TAMU data. The ob-

served behavior is very similar to that of NVZ. Again, 

the maximal fluctuation was found at E*/A=5~6 

MeV/u. The maximal thermal fluctuations are found 

in the same region as the maximal fluctuations in the 

largest cluster sizes. 

The use of kinetic energy fluctuations as a tool to 

measure microcanonical heat capacities has also been 

proposed.[84-87] It has been shown[84] that for a given 

total energy the average partial energy stored in a 

subsystem of the microcanonical ensemble is a good  
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Fig.24  NVE of the QP system formed in Ar+Ni as a function 
of excitation energy in our TAMU data.[58] 

thermometer while the fluctuations associated to the 

partial energy can be used to evaluate the heat capaci-

ty. An example of such a decomposition is given by 

the kinetic energy Ek and the interaction energy EI. 

The interaction energy fluctuation can then be studied 

as a function of the total energy and the heat capacity, 

and can be evaluated according to 

 

(19) 

where 2 2

k I   is the fluctuation of the interaction 

energy EI, T is the temperature, and Ck is the kinetic 

heat capacity that can be evaluated by taking the nu-

merical derivative of <Ek>=E*-<EI> with respect to T. 

Eq.(19) shows that a negative heat capacity corre-

sponds to partial energy fluctuations in the microca-

nonical ensemble that exceed the corresponding fluc-

tuations in the canonical ensemble (can=CkT2). 

In particular, first order phase transitions are 

marked by singularities and negative heat capaci-

ties,[35,84] corresponding to fluctuations anomalously 

larger than the canonical expectation. If the system is 

in statistical equilibrium, a measurement of anomalous 

fluctuations at a given energy is an unambiguous 

proof of a thermal first order phase transition. Fig.25 

shows the normalized partial energy fluctuations and  

 

 

 

 

 

 

  

Fig.25  Left panel: normalized partial energy fluctuations and 
kinetic heat capacity for QP events (grey contours) and central 
Au+C (black dots), Au+Cu (squares, triangles), Au+Au reac-
tions before (open stars) and after subtraction of 1 A MeV radi-
al flow (black stars). Right panel: heat capacity per nucleon of 
the source for QP events and central reactions. From Ref.[87]. 

kinetic heat capacity for QP events (grey contours) 

and central Au+C (black dots), Au+Cu (squares, trian-

gles), Au+Au reactions before (open stars) and after 

subtraction of 1 A MeV radial flow (black stars). 

3.10 Universal fluctuations: Δ-scaling 

The recent developed theory of universal scaling 

laws of order-parameter fluctuations provides a 

method to select order parameters and characterize 

critical and off-critical behavior, without any assump-

tion of equilibrium.[88] In this framework, universal 

Δ-scaling laws of the normalized probability distribu-

tion P[m] of the order parameter m for different “sys-

tem size” <m>, should be observed: 

 

(20) 
 
with 0≤Δ≤1, where <m> and m* are the average 

and the most probable values of m, respectively, and 

(z(Δ)) is the (positive) defined scaling function which 

depends only on a single scaled variable Z(Δ). If the 

scaling framework holds, the scaling relation is valid 

independently of any phenomenological reasons for 

changing <m>.[88] The Δ-scaling analysis is very ro-

bust and can be studied even in small systems if the 

probability distributions P[m] are known with a suffi-

cient precision. 

Botet et al. introduced this universal scaling 

method to the INDRA data for 136Xe+124Sn collisions 

in the range of bombarding energies between 25 

MeV/nucleon and 50 MeV/nucleon. They chose the 

largest fragment charge, Zmax, as the order parameter. 

It was found that at Elab≥32 MeV/nucleon, there is a 

transition in the fluctuation regime of Zmax which is 

compatible with a transition from the ordered phase 

with Δ= 1/2 scaling to the disordered phase with Δ= 

1 scaling of excited nuclear matter.[15] From this study, 

they attributed the fragment production scenario to be 

in the family of aggregation scenarios which contains 

both equilibrium models such as the Fisher droplet 

model, the Ising model, or the percolation model and 

off-equilibrium models such as the Smoluchowski 

model of gels. For such scenarios the average size of 

the largest cluster, <Zmax>, is the order parameter and 

the cluster size distribution at the critical point obeys a 

power law with >2. 
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We have applied the same technique to the Zmax 

distribution from our TAMU data. Fig.26(a) shows the 

Δ-scaling features of P[Zmax] distributions for 
40Ar+58Ni collisions in different excitation ener-

gywindows. 

The upper panel shows that Δ-scaling of P[Zmax] 

distributions for all E*/A windows above 2.0 MeV 

with Δ=1. Essentially for this Δ=1 scaling the curves 

at higher excitation energy above 5.6 MeV/nucleon 

can be compressed into a single curve, however, the 

curves of lower E*/A deviate from this first-scaling 

(i.e. Δ=1). This situation of lower E*/A curves disap-

pears when Δ=1/2 scaling was used. Fig.26(b) shows 

the curves with Δ=1/2. Now these curves collapse 

onto one curve, i.e. they obey Δ=1/2 scaling, but in 

this case, the scaling curves for higher E*/A which 

obeys Δ=1 scaling as shown in Fig.26(a) becomes 

worse and deviate from lower E*/A curves. For com-

parison, Fig.26(c) only plot the higher E*/A scaling 

curves with Δ=1 and the lower E*/A scaling curves 

with Δ=1/2. In this way, a transition from Δ=1/2 

scaling to Δ=1 scaling was found in the region of 

E*/A ~5.6 MeV for our light system. The latter scaling 

corresponds to the fluctuations of the Zmax growing  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.26  Δ-scaling for different E*/A window: all E*/A win-
dows above 2.0 MeV/nucleon are shown together with Δ=1 (a); 
same as (a) but with Δ=1/2 scaling (b); for four E*/A windows 
above 5.6 MeV/nucleon with Δ=1 scaling and four E*/A win-
dows below 5.6 MeV/nucleon with Δ=1/2 scaling (c). From 
TAMU data.[58] 

 

 

 

 

 

 

Fig.27  /<Zmax> as a function of <E*/A>. From TAMU da-
ta.[58] 

with the mean value, i.e.      ~constant (see  
 
Fig.27). The saturation of the reduced fluctuations of  
Zmax (i.e.        )observed above corresponds to the 
 

transition to the regime of maximal fluctuations.[89] 

More recently, we have applied the Δ-scaling to 

multiplicity distribution, strange particle multiplicity 

and the number of binary nucleon-nucleon collision in 

CERN-SPS energy for p + p, C + C and Pb + Pb from 

20 to 200 GeV/nucleon. It looks the scaling holds 

even in such high energy hadron transport process.[77] 

3.11 Caloric curve 

The caloric curve which relates the internal en-

ergy of an excited system at thermodynamic equilib-

rium to its temperature is a priori the simplest experi-

mental tool to look for the existence of a phase transi-

tion. The first determination attempted by the ALA-

DIN collaboration[6] collected the outcome of 197Au on 
197Au collisions at 600 MeV/nucleon with data ob-

tained by means of less energetic collisions. The exci-

tation energy was determined by following the proce-

dure prescribed in Ref. [90] and the corresponding 

temperature fixed by means of arguments relating this 

quantity to the so called double ratio procedure,[91] in 

the present case the ratios of 3He/4He and 6Li/7Li iso-

topes. The corresponding curve showed the features of 

a rather strong first order transition, with a character-

istic close to constant temperature T over a large en-

ergy interval lying between 3 and 10 MeV excitation 

energy per nucleon, which may be interpreted as a 

sign for the generation of latent heat and followed by 

a strong increase of T with excitation energy above 

10 MeV. However, a critical discussion followed this 

observation, in which the hypotheses and simplifica-

tions underlying the definition of the temperature, the 

freeze-out density and the increase of T at high excita-

tion energy were examined.[92] 
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Ma et al. measured Ar on Ni collisions at 52 and 

95 MeV/nucleon with the 4 multi-detector (INDRA) 

in order to investigate this point.[93] Several double 

isotopic yield ratios were used in order to define the 

temperature. We led to different apparent slope tem-

perature increase as a function of the excitation energy. 

The issue of the experiment and its interpretation have 

been performed by means of statistical models.[94-96]  

A temperature plateau is absent for such a light sys-

tem. 

In our TAMU data the caloric curve is also con-

structed.[58] Quasi-projectile has been reconstructed 

with a new method.[59] The determination of initial 

temperature has been deduced by taking the cascade 

method for lower excitation energies[97] or quantum 

statistical model correction for higher excitation ener-

gies[96,98] into account. Fig.28 shows the resultant ca-

loric curve of quasi-projectile Ar. Based upon the 

fluctuation data and Fisher power law analysis of our 

TAMU data, the corresponding initial temperature 

around the critical point is 8.3±0.5 MeV in the region 

of 5.5 MeV/nucleon excitation energy. 

More measurements for the caloric curves have 

been performed in various groups. For instance, for 

100 MeV/nucleon Au+C from EOS group, 4.8 GeV 
3He+Ag/Au reactions from ISIS group,[99] the excited 

systems with A≌110 particles produced by means of 

different projectiles and targets with a bombarding 

energy of 47 MeV/nucleon[100] etc. Nuclear expansion 

density was also extracted from the analysis of caloric 

curves.[101] A collection of the experimental data for 

the caloric curves has been used to deduce the critical 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.28  The deduced caloric curves for Ar quasi-projectiles 
(A≌36) in TAMU data.[58] 

temperature as shown in the following section. 

3.12 Critical temperature 

We collected the experimental data for caloric 

curve in terms of different mass windows and found 

that the onset temperature of the temperature plateau, 

so-called the limiting temperature (Tlim), shows the 

dropping trends with the system mass.[102] See Fig.29. 

This reflects the influence of the Coulomb interaction 

on nuclear instability. In a recent theoretical calcula-

tion, Li et al. also shows the limiting temperatures 

decrease with the increasing of mass number for nu-

clei along the -stability line,[103] which is in agree-

ment with the earlier results of Song and Su et 

al.[104,105] 

Mean values of Tlim/Tc for five different masses 

which result from averaging the results of different 

calculations[104-113] are shown in Fig.30. The estimated 

uncertainties are relatively small, ≈6%. For compar-

ison, the figure also presents ratios of Tlim/Tc which 

are expected to result assuming only finite size effects 

as derived from a lattice calculation[114] and the ratio 

of the nuclear binding energy per nucleon along the 

line of beta stability to the bulk binding energy per 

nucleon, 16 MeV. We have employed the mean varia-

tion of Tlim/Tc with A, determined from commonly 

used microscopic theoretical calculations, together 

with the five experimental limiting temperatures re-

ported in Ref. [7], to extract the critical temperature of 

nuclear matter. In doing so we treat the theoretical 

variation as if it were an experimental uncertainty. 

Since the various interactions employed have been 

“tuned” to other nuclear properties, we consider this a 

reasonable approach. The results are presented 

 

 

 

 

 

 

 

Fig.29  Limiting temperatures vs mass. Limiting temperatures 
derived from double isotope yield ratio measurements are rep-
resented by solid triangles. Temperatures derived from thermal 
bremasstrahlung measurements are represented by open 
squares. Lines represent limiting temperatures calculated using 
interactions proposed by Gogny (dashed)[108] and Furnstahl et 
al (solid).[105] From Ref.[102]. 
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Fig.30  Theoretical variation of the ratio Tlim/Tc with mass 
along the line of beta stability. The solid line indicates the ref-
erence value of Tc. The short dashed line shows the effect of 
finite size scaling derived from an Ising mode.[114] The line with 
alternating short and long dashes depicts the ratio of the nuclear 
binding energy per nucleon to the bulk binding energy per nu-
cleon, 16 MeV. Points with uncertainties are derived from the 
model calculations in Ref. [104]~[113]. From Ref.[102]. 

 

 

 

 

 

 

 

Fig.31  Derived values of the critical temperature of symmet-
ric nuclear matter. Values derived from data in five different 
mass regions are presented. The mean value of 16.6 MeV is 
indicated by the horizontal solid line. The range corresponding 
to ± one standard deviation from this mean value is shown by 
the thin dotted lines. From Ref. [102]. 

in Fig.31. Averaging the individual results we find 

16.6±0.86 MeV. 

This has been used to derive both K, the incom-

pressibility and m*, the effective mass. Extracted by 

comparison with the same interactions as were em-

ployed to determine K from observations of the Giant 

Monopole Resonance at low excitation energy, the 

value of K, obtained here from properties of nuclei at 

moderate excitation energies, is found to be in excel-

lent agreement with that GMR result.[115] 

   The critical temperature has been also extracted by 

the IMF charge distribution for p+Au collisions at 8.1 

GeV within the Statistical Multifragmentation Model 

with Tc (at which surface tension vanishes) as a free 

parameter.[116,117] The value Tc=20±3 MeV (90% CL) 

obtained from the best fit to the data is considered as 

an effective value of the critical temperature averaged 

over all the fragments produced in the collision. This 

value is significantly larger than those found in 

Ref.[18] by the analysis of the multifragmentation 

data in terms of Fisher’s droplet formalism. A surpris-

ingly large range of Tc values in different publications 

indicates severe model dependence of the results. 

Although the SMM value for Tc is model dependent, 

as is any other estimate of the critical temperature, the 

analysis presented here provides strong support for a 

value of Tc>15 MeV. 

3.13 Phase coexistence diagram 

Recently the phase coexistence curve of finite 

neutral nuclear matter has been constructed from the 

EOS multifragmentation data of gold, lanthanum and 

krypton nuclei obtained. The fragment yields are ex-

amined in terms of Fisher’s droplet formalism modi-

fied to account for Coulomb energy. The critical ex-

ponents  and  and the surface energy coefficient c0 

are obtained. Estimates are made of the pres-

sure-temperature and temperature-density coexistence 

curve of finite neutral nuclear matter as well as the 

location of the critical point. 

In the analysis of Elliott et al.,[19] the reduced 

density is given by 

         

(21) 

 

where A is cluster mass and nA is its multiplicity. T is 

temperature and Tc is critical temperature. Eq.21 gives 

the low density (vapor) branch of the coexistence 

curve of finite nuclear matter, shown in Fig.32. 

Following Guggenheim’s work with simple flu-

ids, it is possible to determine the high density (liquid) 

branch as well: empirically, the /c-T/Tc coexistence 

curves of several fluids can be fit with the func-

tion:[118] 

   

(22) 

 

where the parameter b2 is positive (negative) for the 

liquid l (vapor v) branch. Using Fisher’s formalism, 

 can be determined from  and  :[57] 
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Fig.32  The points are calculations performed at the excitation 
energies below the critical point and the lines are a fit to and 
reflection of Guggenheim’s equation. From Ref. [19]. 

For this work =0.3±0.1. Using this value of  and 

fitting the coexistence curve from the EOS data sets 

with Eq.22 one obtains estimates of the v branch of 

the coexistence curve and changing the sign of 2 

gives the l branch, thus yielding the full T- coexist-

ence curve of finite nuclear matter. 

From Fig.32 it is possible to make an estimate of 

the density at the critical point c. Assuming that nor-

mal nuclei exist at the T=0 point of the l branch of 

the coexistence curve, then using the parameterization 

of the coexistence curve in Eq.22 gives c~0/3. 

3.14 Critical exponents 

 Since the pioneering work on extraction of the 

critical exponents for nuclear multifragmention from 

EOS data,[9] several additional experimental and  

theoretical efforts have been attempted.[119-121] In the 

latter works, Elliott et al. show that the scaling be-

havior can remain even in small systems and the criti-

cal exponents can be extracted. 

In the Fisher droplet model, the critical exponent 

 can be deduced from the cluster distribution near the 

phase transition point. In Sec.3.1, we already deter-

mined, from the yield distributions, eff~2.31±0.03, 

which is close to that for the liquid gas phase transi-

tion universality class. In terms of the scaling theory,  
can also be deduced from Scorr, the slope of the corre-

lation between lnS3 vs lnS2,[119] where S3= M3/M1, 

shown in Fig.33. Scorr is related to  as 

 

(24) 

 

Using the value of Tc=8.3 MeV determined from our 

caloric curve measurements (Fig.28), we take the val-

ues of S2 and S3 where the fragment with Zmax is ex-

cluded in the “liquid” phase but included in the “va-

por” phase. The slopes were determined from linear 

fits to the “vapor” and “liquid” regions respectively 

and then averaged. In this way, we obtained a value of 

=2.15±0.1. See Fig.33. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.33  The correlation of lnS3 vs lnS2 and the linear fit. From 
TAMU data.[58] 

Other critical exponents can also be related to 

other moments of cluster distribution, Mk, which were 

defined in Eq.15. Since, for our system, we have al-

ready deduced the initial temperatures and know the 

critical temperature Tc (8.3 MeV) at the point of 

maximal fluctuations, we can use temperature as a 

control parameter for such determinations. In this 

context, the critical exponent  can be extracted from 

the relation  
 

(25) 
 
and the critical exponent  can be extracted from the 

second moment via 
 

(26) 

 

In each case, |1-   | is the parameter which measures 
 

the distance from the critical point. 
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Fig.34 shows Zmax as a function of temperature. 

We note a dramatic change of Zmax around the critical 

temperature Tc. LGM calculations also predict that the 

slope of Zmax vs T will change at the liquid gas phase 

transition[53] (see Fig.6). Using the left side of this 

curve (i.e. liquid side), we can deduce the critical ex-

ponent  by the transformation of the x-axis variable 

to the distance from the critical point. Fig.34(b) shows 

the extraction of  with Eq.25. An excellent fit was 

obtained in the region away from the critical point, 

which indicates a critical exponent  = 0.33±0.01. 

Near the critical point, the finite size effects become 

stronger so that the scaling law is violated. The ex-

tracted value of  is that expected for a liquid gas 

transition (See Table 1).[78] 

To extract the critical exponent , we take M2 on 

the liquid side without Zmax but take M2 on the vapor 

side with Zmax included. Fig.35(a) shows lnM2 as a  
function of ln(|1-  |). The lower points are from the  
 
liquid phase and the upper points from the vapor 

phase. For the liquid component, we use Eq.26 to ob-

tain the critical exponent =1.15±0.06 from a good 

fit in a reasonable range of lnM2. This value of  is 

also close to the value expected for the liquid gas uni-

versality class (see Table 1). It is seen that the    

selected region has a good power law dependence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.34  Zmax as a function of T/Tc (a) and the extraction of the 
critical exponent (b). From TAMU data.[58] 

 

Table 1  Comparison of the critical exponents 

Exponents 3D percolation Liquid-gas This work 

   2.22±0.46 
(Eq.28) 

 2.18 2.21 2.31±0.03 
(Eq.9) 

   2.15±0.10 
(Eq.24) 

 0.41 0.33 0.33±0.01 

 1.8 1.23 1.15±0.06 

 0.45 0.64 0.68±0.04 
 

However, a similar effort to extract the  in the gas 

phase is not successful: a small value less than 0.20 is 

deduced.  This may be due to the finite size effects 

for very light system. Since the largest cluster still 

exists in the vapor side, its inclusion (or exclusion) in 

M2 might contaminate the true moment, this will result 

in an imprecise value of  extracted from the vapor 

phase. For comparison, we just show, for the vapor 

phase, a line representing the  derived from the liquid 

side. This line only agrees with the last few vapor 

points, i.e. the highest temperature points (the con-

tamination of M2 should the least there). In Fig.35(b) 
 

we also show M2 as a function of (1-   ). The left  
 

points are for vapor phase and right points for liquid 

phase and lines represent the same curves as in Fig.35. 

Again for the liquid phase, the critical exponent 1.15 

shows an overall good fit, but for the gas phase it only 

describes the few points where the system has the 

highest temperatures. 

Since we have the critical exponent  and , we 

can use the scaling relation 

 

(27) 

to derive the critical exponent . In such way, we get 

the  =0.68±0.04, which is also very close to the ex-

pected critical exponent of a liquid gas system. 

Finally, it is possible to use the scaling relation 
 

(28) 

to check the  value which was determined from the 

charge distributions using Fisher droplet model power 

law fits around the critical point (see Fig.3). Using 

Eq.28 we obtain =2.22±0.46, which, though less  
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Fig.35  The extraction of critical exponents  (a) and M2 as a 
function of the distance from critical temperature (b). See text 
for details. From TAMU data.[58] 

precise, is in good agreement with the values of 2.31

±0.03 obtained from the charge distribution around 

the point of maximal fluctuations and 2.15±0.1 ex-

tracted from the correlation of lnS3 vs lnS2. 

To summarize this section, we report in Table 1 a 

comparison of our results with the values expected for 

the 3D percolation and liquid gas system universality 

classes and with the results obtained by Elliott et al. 

for a heavier system. Obviously, our values for this 

light system with A≌36 are consistent with the values 

of the liquid gas phase transition universality class 

rather than the 3D percolation class. 

3.15 Spinodal instability 

Recently the multifragmentation of very heavy 

fused systems formed in central collisions between 
129Xe and natSn at 32, 39, 45 and 50 A MeV with IN-

DRA[122] has been studied.[14,123] These fused systems 

can be identified to well defined pieces of nuclear 

matter and eventually reveal fragmentation properties 

to be compared to models in which bulk instabilities 

are present. 

Many theories have been developed to explain 

multifragmentation (see for example Ref.[20], [21], 

[124] for a general review of models). In particular, 

the concept of multifragmentation resulting from the 

volume instabilities of spinodal type has been pro-

posed.[125] During a whole collision process, a wide 

zone of the nuclear matter phase diagram may be ex-

plored and the nuclear system may enter the liquid-gas 

low density phase coexistence region and even more 

precisely the unstable spinodal region. Therefore, a 

possible origin of multifragmentation may be found 

through the growth of density fluctuations in this un-

stable region. Within this theoretical scenario a 

breakup into nearly equal-sized “primitive” fragments 

should be favored in relation with the wave-lengths of 

the most unstable modes present in the spinodal re-

gion.[126] To search for such events a very sensitive 

correlation method was used, which is called “higher 

order correlations” and was proposed in Ref.[127]. 

The charge correlation is defined by the expression: 

 

(29) 

 

Here, Y(ΔZ, <Z>) is the yield of selected events with 

<Z> and ΔZ values and M is the fragment multiplicity. 

The denominator Y’(ΔZ, <Z>) which represents the 

uncorrelated yield is built, for each fragment multi-

plicity, by taking fragments in different events of the 

selected sample. With such a correlation method, if 

events with nearly equal-sized fragments are produced, 

we expect to see peaks appearing at ΔZ values close 

to zero. Taking into account secondary decay of frag-

ments, the bin ΔZ=0~1 was only considered. At 32 A 

MeV incident energy peaks were observed in this bin 

for each fragment multiplicity.[128,129] See Fig.36. 

“Background” has been suitably constructed in 

order to estimate whether the enhancement of events 

with equal-sized fragments is statistically significant.  

Fig.36 shows the higher order correlation functions 

for the first bin in ΔZ with their statistical errors; the 

full line corresponds to the extrapolated “background”. 

All events corresponding to the points whose error bar 

is fully located above this line correspond to a statis-

tically significant enhancement of equal-sized frag-

ment partitions. The number of significant events 

amounts to 0.1% of the selected fusion events. 

The observed weak but unambiguous enhanced 

productions of events with equal-sized fragments at 32 

and 39 A MeV can be interpreted as a signature of 

spinodal instabilities as the origin of multifragmenta- 
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Fig.36  Higher-order charge correlations: quantitative results 
for experimental data at different incident energies. Symbols 
indicate the events where ΔZ=0~1, curves show the background 
(see text). Vertical bars correspond to statistical errors and hor-
izontal bars define Ztot bins. From Ref. [123]. 

tion in the Fermi energy domain. The observation   

is consistent with the measurement of negative mi-

crocanonical heat capacities for the same selected 

fused events at 32 A and 39 A MeV[130] which are pre-

dicted to sign a first order phase transition.[131] 

3.16 Isospin effects 

Since nuclei are composed of neutrons and pro-

tons, isospin effects may be very important for the 

nuclear liquid-gas phase transition.[132] As the asym-

metry between neutron and proton densities becomes 

a local property in the system, calculations predict 

neutrons and protons to be inhomogenously distribut-

ed within the system resulting in a relatively neu-

tron-rich gas and relatively neutron-poor liq-

uid.[46,133,134] The critical temperature may also be re-

duced with increasing neutron excess reflecting the 

fact that a pure neutron liquid probably does not ex-

ist.[133] While our recent calculations suggest that the 

rather narrow range of isospin values available in the 

laboratory might not allow us to observe the decrease 

in critical temperature,[135,136] efforts are underway to 

study the fractionation of the isospin in the 

co-existence region. 

In our calculation, we use I-LGM and I-CMD to 

investigate the isospin dependence of the apparent 

critical temperature for Xe-isotopes.[136] As discussed 

in Section 3.1, a minimum of power-law parameter 

min exists if the critical behavior takes place. Fig.37(a) 

displays  parameter as a function of temperature for 

Xe nuclei with the different isospin. The minimums of 

 parameters in Fig.37(a) locate closely at 5.5 MeV 

for all the systems, which illustrates its minor de-

pendence on the isospin. However,  parameters show 

different values outside the critical region for nuclei 

with different isospin, e.g.,  decreases with isospin 

when T>5.5 MeV (multifragmentation region). 

Fig.37(b) plots the information entropy H as a 

function of temperature for Xe isotopes. The infor-

mation entropy H has peaks close to 5.5 MeV for all 

isotopes. These peaks indicate that the opening of the 

phase space in the critical point is the largest. In other 

words, the system at the critical temperature has the 

largest fluctuation/stochasticity which leads to the 

largest disorder and particle production rate. Beyond 

the critical point, the information entropy H increases 

with the isospin. 

Similarly, Fig.37(c) gives the IMF multiplicity as 

a function of temperature for Xe isotopes. Again, the 

critical behavior occurs at the similar temperature, it 

has weak sensitivity to the isospin, as  reveals. 

 In Fig.37(d) we give the temperature depend-

ences of Campi’s second moment of the fragment 

mass distribution.[33] At the percolation point S2 di-

verges in an infinite system and is at maximum in a 

finite system. Fig.37(d) gives the maximums of S2 

around 5.5 MeV for different isotopes, respectively. 

Again, the critical behavior occurs at the same tem-

perature, independent of the isospin, as  reveals. 

Based on the above analysis, it looks that the ap-

parent critical temperature is very weak sensitive to 

the isospin of sources in the limited isospin range. 

This conclusion is not contradict with the previous 

studies on the isospin dependence of critical tempera-

ture like in [46], where the span of isospin is from 

symmetrical nuclear matter to pure neutron matter. If 

we only look a small span of isospin for the experi-

mentally measurable medium size isotopes, like 
122-146Xe, the change of critical temperature is neglect. 

This conclusion might indicate that it will be difficult  
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Fig.37  Critical observables: parameter from the power law 
fit to mass distribution (a), information entropy (b), multiplicity 
of IMF (c) and Campi’s second moment (d) as functions of 
temperature and isospin of disassembling sources. From 
Ref.[136]. 

to search for the isospin dependence of critical tem-

perature which signals the liquid gas phase transition 

for medium size nuclei in the experimental point of 

view. In addition, values of power law parameter of 

cluster mass distribution, mean multiplicity of inter-

mediate mass fragments (IMF), information entropy 

(H) and Campi’s second moment (S2) also show minor 

dependence on the isospin of Xe isotopes at the criti-

cal point. In contrary, some isospin dependences of the 

values of , H, NIMF and S2 will reveal outside the 

critical region. 

As the isospin effects are not large, the influence 

of sequential decays becomes important and may ob-

scure the isospin fractionation effect one wishes to 

study. To minimize such problems, isobar pairs, such 

as (t, 3He), which have the same number of internal 

excited states, have been used. Some indications for 

isospin fractionation are provided by the sensitivity of 

Y(t)/Y(3He) distributions to the overall N/Z ratio of the 

system.[137] The ratios of Y(t)/Y(3He) have also been 

observed to decrease with incident energies, in quali-

tative agreement with the predictions from the isospin 

dependent lattice gas model.[46,53,134,136] Light isobars 

such as (t, 3He) pair may suffer from contamination of 

pre-equilibrium processes. Attempts have been made 

to use additional mirror isobar pairs such as (7Li, 7Be) 

and (11B, 11C)[138,139] and isospin fractionation was 

discussed. 

4 Conclusions 

In conclusion, theoretical background of nuclear 

liquid gas phase transition has been presented and ex-

tensive observables relating this kind of phase transi-

tion have been shown. When the nuclear liquid gas 

phase transition occurs, the fragment yield distribution 

obeys the power law which was predicted by Fisher 

droplet model. For intermediate mass fragments, their 

multiplicity rises to a maximum and then falls with the 

temperature or excitation. The emission rate of light 

particles and charged particles shows a turning point 

around the phase transition point. From fragment size 

structure, we found that there exists a particular hier-

archical arrangement, so-called the nuclear Zipf-type 

law, which was supported by both the calculation of 

lattice gas model and Texas A&M data and EMU13 

CERN data. The scattering plots of the correlation 

between Zmax and Z2max shows a significant transition 

around the phase transition point. Bimodality parame-

ter also gives a phase separation between dominant 

liquid phase and dominant gas phase when phase tran-

sition takes place.  

Besides, many observables demonstrate the ex-

istence of maximal fluctuations when phase transition 

occurs. These fluctuation observables include the 

Campi scattering plots and the normalized variances 

of the distributions of order parameters, Zmax and total 

kinetic energy and related heat capacity. Δ-scaling 

analysis also shows a universal behavior at higher ex-

citation energy where the saturation of the reduced 
  

fluctuations of Zmax (i.e.       ) is observed. This  
 
corresponds to the transition to the regime of large 

fluctuations from the ordered phase at lower excitation 

energy. 

Caloric curves, critical temperature, critical ex-

ponents, phase co-existence diagram and spinodal 

instability are also discussed. All of them can provide 

some useful information on liquid gas phase transi-

tion. 

Before the end of this review, we should keep in 

mind that a vast amount of work has been done in this 

field by groups spread world-wide. The literature on 
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this subject is enormous. Our review report had to be 

necessarily selective. Some interesting works must 

have left out, we apologize for all the omissions that 

occurred. 
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