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Abstract Small non-coding RNAs are potential diagnostic biomarkers for lung cancer. Mito-
chondria-derived small RNA (mtRNA) is a novel regulatory small non-coding RNA that only
recently has been identified and cataloged. Currently, there are no reports of studies of mtRNA
in human lung cancer. Currently, normalization methods are unstable, and they often fail to
identify differentially expressed small non-coding RNAs (sncRNAs). In order to identify reliable
biomarkers for lung cancer screening, we used a ratio-based method using mtRNAs newly
discovered in human peripheral blood mononuclear cells. In the discovery cohort
(AUC Z 0.981) and independent validation cohort (AUC Z 0.916) the prediction model of eight
mtRNA ratios distinguished lung cancer patients from controls. The prediction model will pro-
vide reliable biomarkers that will allow blood-based screening to become more feasible and
will help make lung cancer diagnosis more accurate in clinical practice.
ª 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Lung cancer remains the leading cause of cancer-related
death worldwide.1 Recently, significant efforts have been
focused on the detection of lung cancer through low-dose
computed tomography (LDCT) scanning. Although lung can-
cer screening with low-dose CT benefits the patients,
screening costs are expensive.2 Moreover, annual LDCT
screening with conventional chest radiography and reveal
that LDCT screening reached a 20% decrease in lung cancer
mortality after only three rounds of screening.3 Although
studies on biomarker for the detection of lung cancer are
numerous, their diagnostic accuracy was low.4e7 Hence, it is
crucial to find inexpensive and reliable methods to detect
lung cancer.

In the process of developing and progressing lung cancer,
mitochondria play an essential role in maintaining cell en-
ergymetabolism.8 A total of 37 genes are found in the human
mitochondrial DNA (mtDNA). These include 2 rRNAs, 22
tRNAs, and 13 protein-coding genes.9 In addition, only about
12% of the individual small RNAs determinate were encoded
in mitochondria. Pathophysiological functions and cancer
development may be influenced by mtRNAs. While various
sncRNAs, including miRNA, snoRNA, and piRNA, have been
extensively studied in the diagnosis of lung cancer, little is
known about small RNAs derived from mitochondria
(mtRNAs).4,10e12 A majority of sncRNA normalization studies
use synthetic external controls or published endogenous
miRNAs as controls. sncRNA studies cannot directly use these
references due to their labile nature. The ratio trans-
formation method can be used for the difficult task of
normalizing sncRNA data for the purpose of identifying reli-
able biomarkers.13e16 The internal or external control
normalization-based method requires two assumptions. A
first assumption is that the sncRNAs and the internal control
are both affected by the same systematic influences; the
second assumption is the true internal control values are the
same for all samples. In contrast, the ratio-based method
supposes that all sncRNAs in a sample share the identical
systematic factors. We propose a new method for lung
cancer diagnosis by using peripheral blood mtRNAs and ratio
transformation.

Methods

Datasets

Gene Expression Omnibus (GEO) repository (GSE148861,
GSE148862) was used for discovery and independent vali-
dation. SPORTS1.1 software was used to align each small
RNA-seq to extract mtRNA expression levels.17 Initially, all
miRNA-seq FASTQ files were cleaned of adapters using NF-
core/smrnaseq software.18 STAR was used to align the
trimmed sequence reads to the mitotRNAdb database.19

Counts were obtained using the htseq-count script from the
HTSeq tools.20 MetImp 1.2 imputed missing values.21

Ratio transformation and statistical analysis

Using a ratio transformation method, we were able to
stabilize the mtRNA expression profile.13 mtRNA1-mtRNA2
transformation were performed using the following equa-
tion: mtRNA1 to mtRNA2 Z mtRNA1/mtRNA2. We analyzed
differentially expressed (DE) mtRNAs in the discovery group
using unpaired Student’s t-test after log transformation.
Feature Selection and modeling were conducted by Random
Forest. ROC curves were graphed using the “precrec”
package. Random forest regression was performed using
“randomForest” package. Principal Component Analysis
(PCA) was performed using “ggfortify” package. A p-value
of 0.05 has been assigned to statistical significance.

Diagnostic model

Differentially expressed (DE) (FDR<0.01) and fold change (|
Log2(fold change) | > 1) ratio-mtRNAs were involved in the
dianostic model. Based on the random Forest model, we
calculated the mean decrease in accuracy and mean
decrease Gini of every transformed mtRNA. Choosing
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Table 1 Clinical characteristics of discovery and inde-
pendent validation lung cancer cohort.

Cohort Discovery Validation

Num. of patients 49 27
Age in years, mean (SD)

Control 52.7(1.0) 45(1.85)
Cancer 62.5(0.28) 60(0.76)

Males, count (%)

Control 7/13(53.8) 6/12(50.0)
Cancer 21/36(58 0.3) 10/15(66.6)

Cancer type (%)

ADC 23/36(63.8) 9/15(60)
SCC 6/36(16.7) 3/15(20)
SCLC 5/36(13.9) 3/15(20)
Other 2/36(5.6)

Smoking history (%)

YES 13/36(36.1) 4/15(26.7)
NO 23/36(63.9) 11/15(73.3)

Distant metastasis (%)

YES 18/36(50) 3/15(20)
NO 18/36(50) 12/15(80)

Lymph node involvement (%)

YES 15/36(41.7) 4/15(26.7)
NO 21/36(58.3) 11/15(73.3)

Tumor stages (%)

Stage I 10/36(27.8) 4/15(26.7)
Stage II 2/36(5.5) 3/15(20)
Stage III 6/36(16.7) 5/15(33.3)
Stage IV 18/36(50) 3/15(20)

Figure 1 mtRNA diagnostic panel. (A) Volcano plot of differentia
(B) Principal Component Analysis (PCA) plot.
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features according to the overlapping of the top ten mean
decreases in accuracy andmean decreases in Gini (Table S1).
A final prediction model was built based on selected
features.

Bioinformatic prediction and GO enrichment
analysis

Theminimum free-energy hybridization (energy<�20 kcal/
mol) of eleven significantly differentially expressed mtRNAs
and target mRNA were predicted by RNAhybrid (http://
bibiserv.techfak.uni-bielefeld.de/rnahybrid). Gene
Ontology (GO) analysis was utilized to profound examine the
potential molecular function (MF) and cellular component
(CC) of predicted target genes.

Results

Patient cohorts

Table 1 summarizes the clinical features of two lung cancer
cohorts. We analyzed 76 cases, comprising 51 lung cancer
patients and 25 healthy controls. The lung cancer group in
the discovery cohort had an average age of 62.5� 0.28,while
the control group had an average age of 52.7� 1.0. The lung
cancer group had 23 (63.8%) adenocarcinoma, 6 (16.7%)
squamous cell carcinoma, and 5 (13.9%) small cell lung car-
cinoma, respectively. A total of 13 (36.1%) patients were
smokers and 18 (50%) patients had distant metastasis. A
comparison of lung cancer and control groups showed an
lly expressed mtRNAs between lung cancer and control group.

http://bibiserv.techfak.uni-bielefeld.de/rnahybrid
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average age of 45 � 1.85 versus 60 � 0.76 in the validation
dataset. The lung cancer group had 9 (60.0%) adenocarci-
noma, 3 (20.0%) squamous cell carcinoma, and 3 (20.0%)
small cell lung carcinoma, respectively. There are 3 (20%)
had distant metastasis and 4 (26.7%) patients were smokers.

The molecular signature composed of mtRNAs

A total of 15 mtRNA species were identified in peripheral
blood samples of human subjects (Table S2). By classifying
Figure 2 The performance of the prediction model in the discove
discovery cohort. (B) ROC curve and PR curve of the diagnostic
***P < 0.001.
mtRNAs according to their parent tRNA types, there are
thirteen types of mtRNAs (i.e., mt-tRNA-His, mt-tRNA-Ser).
Sequences of mtRNA ranged in length from 16 to 38 nu-
cleotides, with an average of 25.5 nucleotides.

Eight dysregulated mtRNAs diagnostic model were
constructed in training dataset

Following the criteria described in the methods section, 106
mtRNA pairs were significantly different by student t-test
ry cohort. (A) Eight model selected mtRNA expression levels in
prediction model with mtRNA markers in discovery cohort.
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(Fig. 1A and Table S3). Unsupervised hierarchical clustering
PCA analysis was performed based on the DE mtRNA pairs.
The PCA plot demonstrated a totally distinct expression
pattern of the mtRNA pairs signature between the lung
cancer and control group (Fig. 1B). RF was used to select the
most effective variables from 106 mtRNA-pairs to build
prediction models. As a result of the RF mean accuracy
decrease, eight mtRNA pairs were selected, including up-
Figure 3 The performance of the prediction model in the ind
expression levels in independent validation data set. (B) ROC curv
markers in the independent validation cohort. ***P < 0.001.
regulated mt_tRNA-Tyr-GTA_5_end/mt_tRNA-Phe-GAA,
mt_tRNA-Tyr-GTA_5_end/mt_tRNA-Phe-GAA, mt_tRNA-Tyr-
GTA_5_end/mt_tRNA-Phe-GAA, mt_tRNA-Gln-TTG_5_end/
mt_tRNA-Phe-GAA and down-regulated mt_tRNA-Phe-GAA/
mt_tRNA-Tyr-GTA_5_end, mt_tRNA-Ser-GCT_5_end/
mt_tRNA-Leu-TAA_5_end, mt_tRNA-Phe-GAA/mt_tRNA-Ser-
TGA_5_end, mt_tRNA-Phe-GAA/mt_tRNA-Leu-TAA_5_end in
cancer samples (Fig. 2A). The model’s performance was
ependent validation cohort. (A) Eight model selected mtRNA
e and PR curve of the diagnostic prediction model with mtRNA



Figure 4 Bioinformatic prediction and GO enrichment analysis. (A) Gene Ontology analysis of molecular function. (B) Gene
Ontology analysis of cellular component.
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evaluated using the receiver operating characteristic curve
(ROC curve) and the Precision-Recall curve (PR curve). The
area under the receiver operating characteristic (ROC) curve
(AUC) for cancer subjects was 0.991 (AUC), while the AUC for
the PR curve was 0.976 (Fig. 2B).

The expression of eight dysregulated mtRNAs in
external validation set were highly consistent with
those of the training set

The prediction model was further evaluated in an indepen-
dent validation cohort. Within the validation dataset, the
boxplot shows the levels of expression of eight mtRNAs
(Fig. 3A). The remaining variation is significant, except for
t00016493_to_t00024522, which is marginal for the valida-
tion cohort. The AUC in the prediction model was 0.916, and
the AUC in the PR curve was 90.5 (Fig. 3B), which indicates
the high classification power for lung cancer screening.

Bioinformatic function prediction

To investigate the regulatory function of the ten mtRNA
signatures, we utilized the RNAhybrid, bioinformatic func-
tional prediction tool. Molecular function (MF) and cellular
component of GO analysis show that cellular component is
catalytic activity acting on RNA and collagen�containing
extracellular matrix terms over-represented significantly
(Fig. 4A, B).

Discussion

Although substantial improvements have beenmade over the
past several decades, lung cancer remains the leading cause
of cancer mortality worldwide. The early and accurate
diagnosis is vital to enhancing the survival rate of patients
with lung cancer. Due to the significant expense and high
false-discovery rate, the achievement of CT screening is
inadequate.22 Hence, the availability of blood-based
screening could improve lung cancer patient uptake. Our
present study aimed to identify the new peripheral blood
small non-coding RNAs as predictive biomarkers for lung
cancer diagnosis. In this article, we use the peripheral blood
mtRNA, which is first applied to lung cancer, to detect lung
cancer diagnostic biomarkers by ratio-based method and
machine learning method. The panel of the peripheral blood
mtRNA biomarkers can discriminate lung cancer patients
from control subjects with ROC curve AUC Z 0.991 and PR
curve AUC Z 0.976. The diagnostic performance of the bio-
markers was further validated in an independent validation
set (ROC AUC Z 0.916, PR AUC Z 0.905). ROC analysis has
shown that the set of eight mtRNAs have the ability to better
distinguish the lung cancer fromnormal than anyother subset
of mtRNAs. It is known from the literature that the evidence
for mtRNA levels decreasing in several cancers is mutually
consistent.23,24 These mtRNAs may act as tumour suppres-
sors. Hence, the discovery might be a significant character-
istic if they are applied for the diagnosis of lung cancer.

Mitochondria are complex eukaryotic organelles for
maintaining cell energy metabolism. Mitochondrial
dysfunction has been involved in an overabundance of
human diseases, most distinctly in cancer and aging.25,26

The respiratory chain of mitochondrial metabolism pro-
duces considerable levels of reactive oxygen species (ROS)
which can alter the structure of the respiratory chain and
cause mitochondrial DNA damage.27 Furthermore, due to
the lack of protective histones, introns, and efficient DNA
repair systems, mitochondrial DNA (mtDNA) obtains 10-fold
more mutations than nuclear genomic DNA. In particular,
damages to mitochondrial DNA are susceptible to smoking.
In lung cancer, the frequency of mtDNA mutation was
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significantly higher in non-smokers when compared to
smokers.8 The functional analysis of the mtRNA-regulated
genes showed a clear bias towards catalytic activity acting
on RNA and collagen-containing extracellular matrix. The
interaction between mtRNAs and mRNA targets may func-
tion as a miRNA-like active structure.

In summary, we have confirmed that a differential
mtRNA expression profile exists in the peripheral blood of
lung cancer patients. Moreover, the prediction model has
been established that may have diagnostic potential to
improve the non-invasive detection of Lung cancer.
Limitations

While models have been established for the diagnosis of
lung cancer, the functions of these mtRNAs remain unclear.
Further research is needed on this issue. Moreover, the
prediction model may be not easy to use by those with little
familiarity with the coding.
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