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Single-cell analysis reveals the
lncRNA-MEG3/miRNA-133a-3p/PRRT2 axis
regulates skeletal muscle regeneration
and myogenesis
Skeletal muscle is the largest motor and metabolic organ of
the body, which has a robust capacity for regeneration
following injury or disease. Delayed regeneration after
skeletal muscle injury reduces muscle contractility and
leads to dysfunction of innervation. Therefore, identifying
the regulation components in skeletal muscle regeneration
and determining their molecular mechanisms are important
to discover novel therapeutic markers for muscular dis-
eases. Long non-coding RNA (LncRNA) has been implicated
in skeletal muscle regeneration. Recent developed single-
cell RNA sequencing (scRNA-seq) provides a higher resolu-
tion of cellular differences than bulk RNA-seq. Here, we re-
analyzed single-cell transcriptomes data of skeletal muscle
regeneration and identified lncRNA maternally expressed
gene 3 (lncRNA-MEG3) was highly expressed in muscle sat-
ellite cells (MuSCs). Further study showed that lncRNA-
MEG3 regulates skeletal muscle regeneration via sponging
miR-133a-3p to regulate proline-rich transmembrane pro-
tein 2 (PRRT2) expression level. These results suggested
that lncRNA-MEG3 might be a potential target for skeletal
muscle diseases.

To identify critical lncRNAs associated with muscle
regeneration at single-cell level, we re-analyzed scRNA-seq
dataset generated by De Micheli (Fig. S1A).1 By combining
the scRNA-seq atlas (Fig. S1B) and histology of regenerating
muscle (Fig. S1C), we discovered that day 5 post-injury was
a critical time point for muscle regeneration. Subsequently,
we investigated the expression of lncRNAs on day 5
following injury. 764 lncRNAs were expressed in at least one
cell (Fig. S1D) and six lncRNAs highly expressed in MuSCs,
myofibroblasts and fibro/adipogenic progenitors (FAPs)
with lncRNA-MEG3 exhibited the greatest abundance in
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MuSCs (Fig. 1A). For confirmation, we re-analyzed other
scRNA-seq datasets for skeletal muscle2,3 and obtained
consistent results (Fig. S1E). During muscle regeneration,
lncRNA-MEG3 expression was induced on day 3 and peaked
on day 5 post injury (Fig. 1B). Interestingly, based on re-
analysis of scRNA-seq data published by He et al,4 we found
that lncRNA-MEG3 was upregulated in MuSCs transitioned
from quiescent to differentiated during embryonic devel-
opment (Fig. S1F, G). Real time quantitative PCR (RT-qPCR)
results showed that lncRNA-MEG3 was abundantly
expressed in skeletal muscle at postnatal day 0 and down-
regulated from postnatal day 0 to day 65 (Fig. S1H, I).
Together, these findings suggested that lncRNA-MEG3 might
be a potential regulator of skeletal muscle regeneration.

Next, a regeneration model by tibialis anterior (TA)
muscle injection was used to determine the role of lncRNA-
MEG3 during skeletal muscle regeneration in vivo (Fig.
S2AeC). In the groups of lncRNA-MEG3 knockdown, the
peak of newly formed myofibers appeared at 7 days post
injury, which was 2 days delayed compared to the control
group (Fig. 1C; Fig. S2DeH). Single-cell transcriptome
analysis showed that immune cells were increased in the
lncRNA-MEG3 knock-down group at 5 days post injury (Fig.
S2IeK) further indicating that lncRNA-MEG3 knockdown
delayed the kinetics of skeletal muscle regeneration.

Given skeletal muscle regeneration relies on the skel-
etal muscle satellite cell myogenesis, we used functional
gain and loss to study the effects of lncRNA-MEG3 on pri-
mary myoblasts (Fig. S3). The cell-counting-kit-8 (CCK-8)
assay, 5-ethynyl-20-deoxyuridine (EdU)-staining, immuno-
fluorescence (IF), RT-qPCR and Western blotting results
showed that lncRNA-MEG3 knockdown significantly
improved the C2C12 proliferation and inhibited differenti-
ation, while cells treated with lncRNA-MEG3 over-
expression vector showed the opposite phenomenon
behalf of KeAi Communications Co., Ltd. This is an open access
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Figure 1 LncRNA-MEG3 promotes skeletal muscle differentiation and regeneration via acting as a ceRNA against miR-133a-3p,
which further upregulated PRRT2 expression. (A) Expression level of 6 lncRNAs in all cell types at 5 days after injury. (B) RT-qPCR
analysis of lncRNA-MEG3 expression in damaged TA muscle on different days (n Z 3). (C) Co-immunofluorescence staining for
laminin and MyHC-embryo; scale bar, 50 mm. Red color indicates the newly formed muscle fiber, green color represents all of the
muscle fiber. (D) EdU-staining analysis for cell proliferation in the siRNA-NC and siRNA-lncRNA-MEG3 groups, nuclei were stained
with DAPI; scale bar, 50 mm (n Z 3). (E) Immunofluorescence staining analysis of differentiated primary myoblasts transfected with
siRNA-NC and siRNA-lncRNA-MEG3 groups and then cultured in DM for 4 days. Nuclei were stained with DAPI. Scale bar, 50 mm. (F)
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(Fig. 1D, F; Fig. S4). Moreover, the roles of lncRNA-MEG3 in
C2C12 were consistent with that in primary myoblasts
(Fig. S5).

The localization of lncRNA in the cell is assumed to be a
marker for determining the regulatory mechanisms of
lncRNA.5 We found lncRNA-MEG3 is mainly expressed in
cytoplasm of C2C12 myotube (Fig. 1G). So, we speculated
that the lncRNA-MEG3 might act as ceRNA in myogenesis.
Microarray profiling of lncRNAs and miRNAs expression in TA
muscle from day 0 to day 65 were performed (Fig. S6AeD;
Table S1, S2) to identify miRNAs interact with lncRNA-
MEG3. Accordingly, miR-133a-3p was selected from four
myomiRs using RNA immunoprecipitation (RIP)-qPCR
(Fig. 1H). This was further confirmed by RNA antisense
purification (RAP)-qPCR (Fig. 1I). Subsequently, the lucif-
erase activity of pmirGLO-lncRNA-MEG3-WT was declined
after miR-133a-3p over-expression, which was rescued by
increasing the concentration of lncRNA-MEG3 (Fig. S6EeG).
Furthermore, the expression level changes of miR-133a-3p
was opposite with lncRNA-MEG3 during skeletal muscle
development, C2C12 myoblasts differentiation, and
regeneration (Fig. S6HeJ). To further determine the regu-
latory relationship, we subsequently conducted the rescue
experiments. The results confirmed that lncRNA-MEG3
repressed the effect of miR-133a-3p on C2C12 proliferation
and differentiation (Fig. S7, S8).

To identify genes that were involved in the ceRNA
network, we performed microarray profiling of the mRNA
transcriptome in lncRNA-MEG3 knockdown C2C12 and skel-
etal muscle at postnatal day 0 and day 65 (Fig. S9AeC and
Table S3e5). Interestingly, only PRRT2 was identified after
bioinformatic analysis (Fig. 1J). In addition, the expression
levels of PRRT2 and lncRNA-MEG3were positively correlated
during skeletal muscle development and C2C12 differentia-
tion, and the PRRT2mRNA expression level was upregulated
after lncRNA-MEG3 overexpression (Fig. S9DeH). Further
experiments showed that PRRT2 is a target gene ofmiR-133a-
3p and it could inhibit C2C12 proliferation and promote dif-
ferentiation (Fig. S9IeL, S10, 11).

Subsequently, we further confirmed lncRNA-MEG3/miR-
133a-3p/PRRT2 ceRNA regulatory network. The dual-lucif-
erase assay results showed that the activity of pmir-GLO-
PRRT2 WT vector was reduced after miR-133a-3p over-
expression, which was reversed by the addition of
pcDNA3.1-lncRNA-MEG3 WT but not pcDNA3.1-lncRNA-
Western blotting analysis of PCNA and MyHC expression levels in
lncRNA-MEG3 (n Z 3). (G) Nuclear-cytoplasmic separation test of
entiated in DM for 3 days. (GAPDH as cytoplasmic marker; NEAT1 as
verify the interaction between miRNAs and lncRNA-MEG3 after over
RAP-qPCR assay for the amount of miR-133a-3p in TA muscle. MiR
panel). RT-qPCR results showed miR-133a-3p enrichment by lncRNA
diagram of overlapping target genes. The target genes were pr
transfected with siRNA-lncRNA-MEG3 (Microarray 1), and Microarr
(Microarray 2). (K) Determination of luciferase activities in differen
with pcDNA3.1, miR-133a-3p, pcDNA3.1-lncRNA-MEG3 WT and pcD
enrichment of lncRNA-MEG3 and PRRT2 in control pcDNA3.1 and pc
miRNA-133a-3p, PRRT2, and lncRNA-MEG3 expression level after lnc
SRF and INSR mRNA expression levels in C2C12 myoblasts after lncR
the lncRNA-MEG3 regulatory network. Data are expressed as mean v
to analyze the statistical significance between two groups. **P < 0
MEG3 MUT plasmid (Fig. 1K). RIP-qPCR assay showed that
overexpression of lncRNA-MEG3 caused a significant
decrease in the enrichment of PRRT2 level (Fig. 1L). In
addition, knockdown of lncRNA-MEG3 increased the
expression of miR-133a-3p and downregulated the expres-
sion of PRRT2 in TA muscle (Fig. 1M). The expression of SRF
and INSR as miR-133a-3p targets were regulated by over-
expression or silencing lncRNA-MEG3 expression level
(Fig. 1N; Fig. S12A). Moreover, the effects of miR-133a-3p
on C2C12 myoblasts were significantly reversed by lncRNA-
MEG3 overexpression vector (Fig. S12BeE). Collectively,
these results showed that lncRNA-MEG3 serves as a ceRNA
for miR-133a-3p to regulate PRRT2 expression level during
skeletal muscle regeneration (Fig. 1O).
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