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Abstract Sickle cell disease has been shown to demonstrate extensive variability in disease
severity among and between individuals, the variability highlighted by differing genetic haplo-
types. Despite the abundance of reports of functional significance due to polymorphisms of
endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) genes, the role of these poly-
morphisms in mediating sickle cell disease pathophysiology among African Americans is pres-
ently unclear. To deconvolute their potential significance among African Americans with
sickle cell disease, we examined the genetic diversity and haplotype frequency of eNOS and
ET-1 polymorphisms in disease (n Z 331) and control (n Z 379) groups, with a polymerase
echain reaction restriction fragment length polymorphism assay. We report that genotypic
and allelic frequencies of eNOS variants are not significantly different between groups. eNOS
homozygote mutants, which had been shown to have clinical significance elsewhere, showed
no statistical significance in our study. On the other hand, and contrary to previous report
among Africans with sickle cell disease, the endothelin-1 homozygous mutant variant showed
significant difference in genotypic (p Z 2.84E-12) and allelic frequencies (p Z 2.20E-16) be-
tween groups. The most common haplotype is the combination of T786C homozygote wild-
type variant with homozygote mutant variants of G5665T (ET-1) and Glu298Asp (eNOS). These
results show that endothelin-1 (rs5370) polymorphism, rather than endothelial nitric oxide
synthase polymorphism might play a significant role in disease severity or individual clinical
outcomes among African Americans with sickle cell disease. This would have profound
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implications for designing and/or advancing personalized care for sickle cell patients and
relieving disease complications.
Copyright ª 2016, Chongqing Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
Introduction

Sickle cell disease, a red cell disorder with multiple acute
and chronic complications, and differing pathophysiological
outcomes, remains a healthcare challenge, especially in
sub-Saharan Africa.1e3 The greatest toll of disease in the
United States is in the black community among African
Americans and immigrant populations from sub-Saharan
Africa, some parts of the Middle East and Caribbean with
an African descent, in addition to cases and other closely-
related red cell disorders from the Indian sub-continent.4

Since sickle cell disease has a genetic basis, its patho-
physiology (vaso-occlusive crises, stroke, leg ulceration,
acute chest syndrome, pulmonary hypertension etc.) has
been found to vary widely, at times following an interethnic
pattern.5e7 Disease manifestations have been shown to be
regulated by polymorphisms of genes reported to display
clinical significance, among which are the endothelial nitric
oxide synthase (eNOS) (polymorphisms include one in the
promoter region (T-786C), one in exon 7 (Glu298Asp), and
the variable number of tandem repeats (VNTR) in intron 4)
and endothelin-1 (ET-1) genes. The C-786 variant of eNOS
T786C polymorphism (rs2070744) is a genetic risk factor for
acute chest syndrome in female patients,8,9 while eNOS
VNTR in intron 4 has been associated with plasma nitric
oxide levels and vasculopathy.10 In fact, a study from India
found an association between eNOS gene polymorphisms
and sickle cell disease severity,4 concluding that eNOS gene
is a genetic modifier of phenotypic variation among pa-
tients, or a marker of prognostic value, based on associa-
tion with SCD clinical outcome.11 Endothelin-1 (rs5370)
gene is another whose polymorphism has been implicated in
disease pathophysiology, including progression of chronic
glomerulosclerosis,12 pulmonary hypertension13,14 and
vaso-occlusive episodes correlated with pain history.15 Its
G5665T and T8002C variants have been associated with
abnormal vascular reactivity, while the C8002 allele ap-
pears to increase the risk of acute chest syndrome in sickle
cell disease.8

Published reports from our group and others, have
shown that there is a significant interethnic diversity in the
distribution of eNOS variants16e19 and this could be poten-
tial contributor to differing sickle cell pathophysiology.19

Despite the reports from other populations,4,5,8e11 we
showed previously that there is no difference in the geno-
typic or allelic frequencies of eNOS and endothelin-1 vari-
ants or significance of both polymorphisms among sickle
cell disease patients from Africa.20 If this is the case, do
endothelial nitric oxide synthase and endothelin-1 gene
polymorphism contribute to clinical pathophysiology among
phenotypically-related African Americans with sickle cell
disease? In this report, we investigated the genetic diversity
and haplotype frequency of eNOS and ET-1 gene poly-
morphisms among sickle cell patients, recruited as part of
the National Institute of Health-funded Cooperative Study
of Sickle Cell Disease (CSSCD). Control populations are Af-
rican American self-identified individuals, recruited from
Shreveport, LA, United States.

Materials and methods

This project was reviewed and approved by the Institutional
Review Board, Rochester Institute of Technology, and is in
accordance with Helsinki Declaration. Genomic DNA ali-
quots from African American sickle cell disease patients, as
previously described7,21 were graciously provided by Betty
Pace (Augusta University, GA) while control DNA samples
(non-sickle cell patients; recruited from Shreveport, LA)
were provided by Joann Moulds (Grifols Inc). PCR geno-
typing for all three endothelial nitric oxide synthase (a
polymorphism in the promoter region T786C, rs2070744;
another in exon 7 Glu298Asp, rs1799983; and the variable
number of tandem repeats in intron 4) and endothelin-1
(G5665T) polymorphisms were carried out as pub-
lished.19,20,22 Amplified PCR products were digested with
specific restriction enzymes, as shown previously, while
fragment size analysis was carried out as reported.19,20,23

Data was analyzed with a simple PERL script and con-
version of original data files to an EH program format was
carried out as described.20 Differences in genotype and
allele frequencies between disease and controls were
assessed by odds ratio and chi square test. Haplotype fre-
quencies were estimated and tested for disease differences
with the EH program.24 Tests for deviation from Har-
dyeWeinberg equilibrium were performed, with SNP’s
rejected based on the recommended threshold of p < 0.05
in control individuals.

Results and discussion

Sickle cell disease is an inheritable, single gene disorder,
found between groups and a major contributor to signifi-
cant childhood mortality, especially in sub-Saharan Africa,
and has been reported to show significant interethnic
variability in pathophysiology and disease severity. Previous
reports have shown that endothelial nitric oxide synthase
and endothelin-1 gene polymorphisms are significant in
mediating or regulating sickle cell disease outcome or
severity,4e6,25 plus roles in other diseases or pharmacolog-
ical applications.26e30 Our previous work has shown that
endothelial nitric oxide synthase and endothelin-1 gene
polymorphisms have no significance among native Africans
with sickle cell disease.20
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Fig. 1 Genotypic (a) and allelic (b) frequency of endothelin-1 G5665T (rs5370) gene polymorphism between sickle cell disease
and control groups in United States. Two units of Cac8I restriction enzymes was used to digest amplified PCR products (c), yielding
fragments of 262 base pair (homozygous wild type-GG) or 193 and 69 base pairs (homozygous mutant-TT). Blue bars-sickle cell
disease patients; red bars-controls.

Table 1 Estimated eNOS and ET-1 gene haplotype fre-
quencies between sickle cell disease and control groups.

Haplotypes Haplotype frequencies

T786C Glu298Asp G5665T Case Control Case vs
control

T Glu G 0.3364 0.1666 0.1682
T Glu T 0.4188 0.5727 0.2306
C Glu G 0.0794 0.0110 0.0446
C Glu T 0.0640 0.1213 0.0446
T Asp G 0.0479 0.0060 0.1028
T Asp T 0.0246 0.0682 0.3185
C Asp G 0.0120 0.0068 0.0081
C Asp T 0.0167 0.0473 0.0826

Abbreviations: SCD, sickle cell disease; CI, confidence interval;
eNOS, endothelial nitric oxide synthase.
Odds ratio and p-value was calculated by two-tailed Fisher’s
exact test. Haplotype analysis was carried out with the EH
program (lab.rockefeller.edu/ott/programs).
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Following up on reports of clinical significance in other
population groups, we evaluated the genotypic and allelic
frequencies of endothelial nitric oxide synthase (eNOS) and
endothelin-1 (ET-1) gene polymorphisms among and
between African American sickle cell disease patients and
controls and estimated the haplotype frequencies between
groups. The polymorphisms analyzed are eNOS �786T>C
(snp rs2070744) in the promoter region, the eNOS 298Glu-
>Asp (snp rs1799983) in exon 7, and the ET-1 5665G>T (snp
rs5370) of the endothelin-1 gene. There was no statistically
significant difference in the genotypic and allelic fre-
quencies of eNOS variants between sickle cell disease and
control groups. The homozygous wild type variants
occurred at a higher and similar frequency in both groups
(68.9% versus 64.4% for T/T (rs2070744) and 80.7% versus
75.5% for Glu/Glu (rs1799983) respectively). eNOS homo-
zygous mutant variants are less frequent (3.3% versus 1.6%
for rs2070744 and 0.9% versus 1.0% for rs1799983), and
seem to lack any functional significance in sickle cell dis-
ease (p Z 0.15 and 1 for eNOS �786T>C and eNOS
298Glu>Asp respectively), contrary to published reports
elsewhere. A similar pattern was observed for allelic fre-
quencies, with no difference between sickle cell and con-
trol groups (pZ 0.53 and 0.13 for eNOS �786T>C and eNOS
298Glu>Asp respectively).

This current report shows the similarity of our previous
observation on eNOS polymorphisms among and between
Africans and African Americans.19 Our data show that there

http://lab.rockefeller.edu/ott/programs
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is no statistically significant difference in the genotypic or
allelic frequencies of endothelial nitric oxide synthase
polymorphisms between African American sickle cell dis-
ease and control groups. In addition, eNOS gene poly-
morphisms (rs2070744 and rs1799983) were equally
distributed, with no deviations from the HardyeWeinberg
equilibrium. This lack of difference in eNOS gene poly-
morphisms between African and American sickle cell dis-
ease groups imply observations made in one population
could potentially be applied to the other, with disease
following a similar pattern on eNOS polymorphisms in both
populations. Potential contribution of genomic heteroge-
neity in the control group30 to our results would require
further deconvolution, since significant admixture in this
group could be a confounding factor to our observations
and attributable conclusions. Following up with our previ-
ous report on the impact of geographical origin on genetic
outcome among African American population,19 further
studies evaluating this polymorphism in representative
groups, recruited from other parts of the United States vis-
à-vis regional- or disease-specific selection pressures is
imperative.

With the G5665T (rs5370) polymorphism on the ET-1 gene
however, we found a statistically significant difference in
both the genotypic (pZ 2.84E-12) and allelic (pZ 2.20E-12)
frequencies of the mutant variant between sickle cell and
control groups (Fig. 1). Comparing variants, we found the
highest genotypic (40.5% versus 66.5%) and allelic (52.4%
versus 80.9%) frequencies on the homozygous mutant loci
(ET-1 5665T>T) for both sickle cell disease and control
groups, contrary to previous observation among Africans
with sickle cell disease.20 That the highest frequency for the
G5665T (rs5370) homozygous mutant variant was found
among controls and not sickle cell disease patients, calls
into question previous reports of endothelin-1 poly-
morphisms, as being implicated in sickle cell disease path-
ophysiology and clinical variability. This higher frequency of
endothelin-1 homozygous mutant variants in African Amer-
ican controls reveal a potential unrelated role, probably
hitherto unknown, of this variant in possibly other disease
conditions but not sickle cell disease.25,31 This difference,
compared to our African population potentially also reflects
the role of ancestry, traceable either to the Afroasiatic and
Nilo-Saharan speaking populations of coastal West Africa or
the Niger-Kordofanian groups of inland West Africa.

Designing haplotype tables from previous report,19 four
types of eNOS and endothelin-1 gene haplotypes were
observed between sickle cell and control groups. All
haplotype combinations were represented, at varying rates
(Table 1). The highest frequencies, combines the wild-type
homozygotes for eNOS �786T>C and eNOS 298Glu>Asp and
ET-1 5665G>T homozygote mutant (41.9% versus 57.3% for
sickle cell disease and control groups), followed by homo-
zygote wild-type for all three polymorphisms (33.6% versus
16.7% for sickle cell disease and controls respectively).
There is a significant difference in haplotype frequencies
between case and controls (p < 0.01). The significant
disparity in endothelin-1 gene polymorphisms between
cases and controls in United States but not in Africa displays
either a potential benefit on disease pathology among Af-
rican Americans, or a deleterious effect among Africans,
with consequent implications with genetic haplotypes.
This current observation of significant diversity in
endothelin-1 polymorphism between African American
sickle cell disease and control groups deserves further ex-
amination. To do this, increasing the sample size and
further characterization alongside specific clinical param-
eters, disease stratification (severe versus mild) and sickle
cell genetic haplotypes would provide a great benefit in
elucidating their clinical and therapeutic implications in
disease pathophysiology. Our report shows that endothelial
nitric oxide synthase variants are less frequent with no
significance among patients with sickle cell disease either
in Africa20 or United States, while there is a potential role
for endothelin-1 polymorphism in delineating clinical vari-
ability or disease pathophysiology, not seen in Africa but in
United States.
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