Synthesis of highly concentrated, carrier free ¹⁸⁸Re-mercaptoacetyltriglycine

ZHANG Xiu-Li, WANG Yong-Xian, LI Jun-Ling, ZHANG Chun-Fu, WANG Li-Hua, YIN Duan-Zhi

(Shanghai Institute of Nuclear Research, the Chinese Academy of Sciences, Shanghai 201800)

Abstract Chelation of ¹⁸⁸Re to compounds such as MAG₃ will further reduce the radiation dose to the patient in case of balloon rupture through the rapid excretion from the body. In order to prepare highly concentrated, carrier free ¹⁸⁸Re-MAG₃, S-benzoyl mercaptoacetyltriglycine (S-Bz-MAG₃) was synthesized, labeled with carrier free ¹⁸⁸Re. The overall yield of S-Bz-MAG₃ is higher than those published in the literature. Dependence of the labeling yield of ¹⁸⁸Re-MAG₃ upon concentrations of reducing agent, pH, reaction time, etc. was examined and optimum conditions were confirmed. The concentrated ¹⁸⁸Re-MAG₃. In the case of optimum conditions, the labeling yield of ¹⁸⁸Re-MAG₃ was more than 98%. Radiochemical purity of ¹⁸⁸Re-MAG₃ was more than 92% after 24 hour storage at room temperature.

Keywords ¹⁸⁸Re-MAG₃, Synthesis, Labeling, Carrier free, RIT CLC number O615.4 A

1 INTRODUCTION

The radioisotope of ¹⁸⁸Re, with a half-life of 17 h, may be an attractive isotope for radioimmunotherapy (RIT).^[1] ¹⁸⁸Re decays by β emission with high energies (maximum 2.11 MeV) and it also emits a γ photon (155 keV, 15%) suitable for imaging. The greatest importance is the availability of carrier-free ¹⁸⁸Re-perrhenate at any time in the clinical setting by saline elution of a ¹⁸⁸W/¹⁸⁸Re generator system. Furthermore, the high-energy β -particles emitted by ¹⁸⁸Re have a longer average range (about 2.2 mm in tissues). The chemical property of rhenium is very active, like Tc, so that it can form many stable complexes.

Rhenium chemistry is dominated by redox reactions, and perrhenate is a negatively charged anion that is rapidly excreted from living systems, preventing the ultimate

Supported partially by Key Project of Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX1-sw-08)

Manuscript received date: 2002-03-04

metabolite from accumulating in non-target tissues. Because ¹⁸⁸Re is very promising for RIT, we developed a series of ¹⁸⁸Re labeled radiopharmaceuticals.^[2-5]

Mercaptoacetyltriglycine (MAG₃) is a compound that has been extensively used in nuclear medicine both as 99m Tc radiopharmaceutical for kidney imaging and as a prosthetic group for labeling antibodies and biomolecules with 99m Tc, 186 Re, 188 Re, $^{[6-9]}$

Catheter balloon filled with ¹⁸⁸Re-labelled radiopharmaceuticals for intracoronary radiation therapy to reduce restenosis provides technically a simple, safe and inexpensive method to deliver a radiation field that conforms to the vessel shape in the optimal geometry. Chelation of ¹⁸⁸Re to compounds such as MAG₃ will further reduce the radiation dose to the patient in case of balloon rupture by the rapid excretion from the body. Highly concentrated ¹⁸⁸Re-labelled radiopharmaceuticals may shorten irradiation time for patients with prerequisite concentration of solutions. S-Bz-MAG₃ was synthesized and ¹⁸⁸Re-MAG₃ chelate was prepared in this study.

2 MATERIALS AND METHOD

2.1 Materials

¹⁸⁸Re was obtained from an alumina-based ¹⁸⁸W/¹⁸⁸Re generator. The sodium tungstate [¹⁸⁸W] solution was provided by the Oak Ridge National Laboratory (Oak Ridge, TN USA). Elution of the generator with 0.9% NaCl provided solutions of carrierfree ¹⁸⁸Re as perrhenate. The nuclide purity of ¹⁸⁸Re was greater than 99% analyzed by γ -spectroscopy with a high purity germanium (HPGe) detector (GEM-15190, EG&G Ortec, Oak Ridge, TN USA) and the radiochemical purity of Na¹⁸⁸ReO₄ was more than 95% by paper chromatography developed with 0.9% NaCl.^[10] A solid scintillation counter with NaI(Tl) crystal was used for radioactivity measurements. The IR spectra were taken with a NICOLET 360FT-IR spectrophotometer (potassium bromide). Dicyclohexylcarbodiimide (DCC, 99%), Glycylglycylglycine (98.5%) were from Fluka and N-hydroxysuccinimide (NHS) (98%) was from Acros. All other chemicals were from Shanghai Chemical Co. and all were of guaranteed grade. Thin layer chromatography (TLC) was carried out on silica gel GF₂₅₄, developing agent: CHCl₃:CH₃OH:glacial acetic acid=60:40:1. Xinhua No.1 paper was used for paper chromatography.

2.2 Synthesis of S-Bz-MAG₃^[11,12]

2.2.1 S-benzoylthioglycolic acid ("1")

8.8 g (0.22 mol) of sodium hydroxide and 9.2 g (0.1 mol) of thioglycolic acid were dissolved in a mixture of 75 mL of toluene and 75 mL of water and cooled in an ice bath at about $-5-0^{\circ}$ C. 14.05 g (0.1 mol) of benzoic acid chloride was added within 30 min

while stirring, and stirring for another 30 min at $-5-0^{\circ}$ C and additional 30 min at room temperature. The organic layer was separated, washed four times with water, and the combined aqueous phases were acidified to pH 1.5 by the addition of concentrated hydrochloric acid. The precipitated product was filtered and dried. Recrystallization from ethyl acetate gave 16.1g (83%) of product as colorless crystals with a melting point of 99-101°C (Ref. [11]: 102-103°C).

2.2.2 Succinimidyl-S-benzoylthioglycolate ("2")

9.8 g (0.05 mol) of S-benzoylthioglycolic acid ("1") and 5.75 g (0.05 mol) of N-hydroxysuccinimide were dissolved in 60 mL of absolute tetrahydrofuran and then cooled to -5° C. Then 12.38 g (0.06 mol) of dicyclohexylcarbodiimide, dissolved in 20 mL of tetrahydrofuran, were added within 20 min while stirring. Subsequently the reaction mixture was stirred for 2 h at -5° C, then at room temperature for 20 h. After the addition of 0.2 mL of glacial acetic acid and stirring for an additional hour, the product was filtered from the N,N'-dicyclohexylurea and the residue was extracted twice with boiling tetrahydrofuran. The combined filtrates were evaporated to dryness and the colorless residue was recrystallized from ethyl acetate to obtain 12.65 g (86.4%) of colorless needles with a molting point of 131-134°C (Ref. [11]: 135-137°C); R_f =1.0.

2.2.3 S-benzoyl mercaptoacetylglycylglycylglycine (S-Bz-MAG₃, "3")

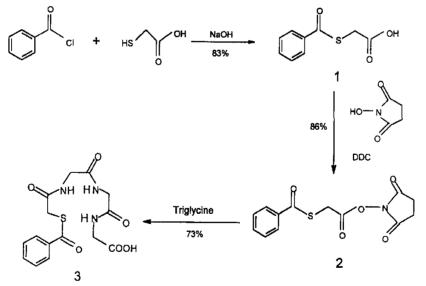
1.42 g (7.5 mmol) of glycylglycylglycine was dissolved in 1 mol/L of NaOH (7.5 mL) solution. Then this solution was added in one portion to a warm solution (60°C) of 2.93 g (10 mmol) of "2" in 25 mL of acetonitrile. The mixture was stirred for 4 h at the temperature, and then stirred at room temperature for 20 h. The acidity of the mixture was adjusted to pH 2 by addition of 1 mol/L of hydrochloric acid, and the resulting precipitate was filtered off, washed with water and recrystallized from isopropanol. The solid was dried in silica gel desiccator, resulted in 2.0 g (73%) of "3"; $R_{\rm f}$ =0.45; m.p. 193-195°C (dec.) (Ref.[6]:195-196°C); IR, cm⁻¹ (KBr): 3290(ν -NH), 1708 (ν -COOH), 1665(ν -S-C=O), 1649 (ν -N-C=O).

2.3 Synthesis and purification of ¹⁸⁸Re-MAG₃ compound

To a buffer solution of tartrate, 4 mg of $SnCl_2 \cdot 2H_2O$, 4 mg of ascorbic acid, 1 mg of S-Bz-MAG₃ solution, and 0.5 mL of ¹⁸⁸Re solution were added. The reaction mixture was allowed to react at boiling point of water for 1 h. The labeling yields and radiochemical purity of ¹⁸⁸Re-MAG₃ were determined by two-strip paper chromatography. One PC strip was developed with tetrahydrofuran:chloroform:acetone=2:1:1 for detection of ¹⁸⁸Re-MAG₃ and hydrolyzed rhenium(¹⁸⁸ReO₂); and the other PC with normal saline for detection of hydrolyzed rhenium(¹⁸⁸ReO₂).^[13]

¹⁸⁸Re-MAG₃ solution was obtained under the optimum conditions. The reaction

mixture was loaded onto Sep-Pak C18 Cartridge, which had been primed with 10 mL of ethanol and 10 mL of 1% acetic acid solution. A further 5 mL of 1% acetic acid solution was eluted through the cartridge, then the residual solution was withdrawn by air. The cartridge was then eluted with 1 mL of ethanol/water solution, and the eluted solution was collected in a glass tube. After complete evaporation of the azeotropic ethanol/water solution, the residue was reconstituted with 1 mL of 0.9% saline.


2.4 Stability of ¹⁸⁸Re-MAG₃ compound

After synthesis and purification, 188 Re-MAG₃ was allowed to stand at room temperature for 24 h and the radiochemical purity was checked at intervals of 0 h, 3 h, 6 h and 24 h by two-strip paper chromatography.

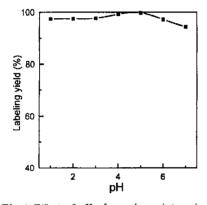
3 RESULTS AND DISCUSSION

3.1 Synthesis of S-Bz-MAG₃

The benzoyl protected precursor of mercaptoacetylglycylglycylglycine was synthesized following the synthetic route outlined in Scheme 1. The yield of "1" and "2" as well as the overall yield at -5-0°C are higher than those by Brandau.^[10] By using acetonitrile as solvent, the preparation of "3" avoided complicated extraction course.

Scheme.1 Reaction scheme for the synthesis of S-benzoyl mercaptoacetylglycylglycylglycine (S-Bz-MAG₃)

240


3.2 Synthesis of ¹⁸⁸Re-MAG₃ compound

3.2.1 Effect of pH

The influence of pH on the labeling yields was shown in Fig.1. The influence was found to be negligible. The labeling yields were over 95% for the pH from 1 to 6, and reached maximum at pH 5.

3.2.2 Effect of stannous chloride concentration

As a reducing agent, stannous chloride is very important in labeling process. The dependence of the labeling yields of ¹⁸⁸Re-MAG₃ on the concentration of stannous chloride was shown in Fig.2. When the concentration of stannous chloride was less than 3 mg, the yield of ¹⁸⁸Re-MAG₃ is under 90%; and the labeling yield reached 98% when the concentration of stannous chloride was 4 mg.

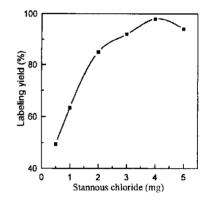


Fig.1 Effect of pH of reaction mixture in the 188 Re-MAG₃ synthesis

Fig.2 Effect of the concentration of stannous chloride

3.2.3 Effect of ascorbic acid concentration

Ascorbic acid can stabilize low-valence rhenium. Fig.3 shows that the labeling yield of 188 Re-MAG₃ is over 95% with ascorbic acid from 1 mg to 4 mg. 4 mg ascorbic acid was selected.

3.2.4 Effect of MAG₃ concentration

The labeling yield of ¹⁸⁸Re-MAG₃ is over 95% with MAG₃ from 0.2 mg to 1.2 mg (Fig.4). Obviously, MAG₃ concentration does not affect the labeling yield within this range.

3.2.5 Effect of reaction time

The labeling yield increase as a function of reaction time at 100° C between 10 to 50 min is shown in Fig.5. The maximum yield of over 95% was reached at about 50 min and apparently constant between 50 and 70 min.

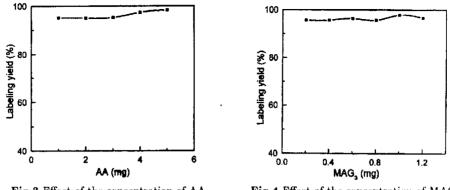
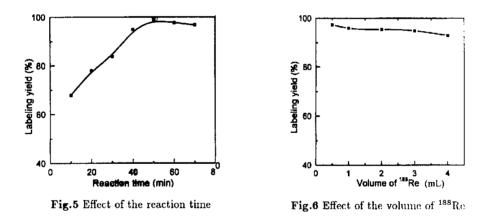



Fig.3 Effect of the concentration of AA

Fig.4 Effect of the concentration of MAG₃

3.2.6 Effect of volume of ¹⁸⁸Re added

The labeling yield of ¹⁸⁸Re-MAG₃ depended on the volume of ¹⁸⁸Re added. It decreased as a function of volume of ¹⁸⁸Re added (Fig.6). When the volume of ¹⁸⁸ReO₄⁻ was increased to 4 mL, the labeling yield of ¹⁸⁸Re-MAG₃ was reduced to 93%.

3.2.7 Effect of different transchelation reagents

Under the optimum conditions, citrate and gluconate were used as transchelation reagents, respectively. The results show that the transchelation reagents don't affect the labeling yield.

3.3 Stability of ¹⁸⁸Re-MAG₃

The results of stability of ¹⁸⁸Re-MAG₃ at pH 5 are shown in Table 1. Radiochemical

purity of ¹⁸⁸Re-MAG₃ was still more than 92% after 24 h storage at room temperature.

Table 1 Radiochemical purity (%) of ¹⁸⁸Re-MAG₃

t (h)	0	1	3	6	24
Radiochemical purity (%)	98.8	96.8	96.4	95.4	92.6

In our studies, MAG₃ and ¹⁸⁸Re-MAG₃ were synthesized via two procedures including chelation of ¹⁸⁸Re to transchelation reagent, ligand exchange, and deprotection of the benzoyl group. The labeling procedure was at higher pH with stannous chloride as a reducing reagent. ¹⁸⁸Re-MAG₃ was purified and concentrated with Sep-Pak C_{18} cartridge to obtain highly concentrated, carrier free ¹⁸⁸Re-Mercaptoacetyltriglycine. The separation efficiency of Sep-Pak C_{18} cartridge is more than 96%. ¹⁸⁸Re-MAG₃ exhibits good stability.

References

- 1 Yin D Z, Yu J F, Wang Y X. Nucl Tech (in Chinese), 2000, 23:347-352
- 2 Yin D Z, Guo Z L, Zhang J et al. Nucl Tech (in Chinese), 1999, 22:374-377
- 3 Ding Z G, Yu J F, Yin D Z et al. Nucl Tech (in Chinese), 2000, 23:762-766
- 4 Yu J F, Yin D Z, Min X F et al. J Labelled Compd Radiopham, 1999, 42:233-243
- 5 Lin Y W, Wei H P, Zhang X L et al. Nucl Tech (accepted)
- 6 Fritzberg A R, Kasina S. Eshima D et al. J Nucl Med, 1986, 27:111-116
- 7 Hjelstuen O K, Tønnesen H H, Bremer P O et al. Nucl Med Biol, 1998, 25:651-657
- 8 Gog Frank B, Visser G W M, Klok R et al. J Nucl Med, 1996, 37:352-362
- 9 Guhlke S, Schaffland A, Zamora P O et al. Nucl Med Biol, 1998, 25:621-631
- 10 Yin D Z, Hu W Q, Cai X M et al. Nucl Tech (in Chinese), 1998, 21:51-55
- 11 Brandau W, Bubeck B, Eisenhut M et al. Appl Radiat Isot, 1988, 39:121-129
- 12 Schneider R F, Subramanian G, Feld T A et al. J Nucl Med, 1984, 25:223 229
- 13 Hung J C, Wilson M E, Brown M L. J Nucl Med Technol, 1991, 19:176-179

No.4