Sustained mutagenic effect in bone marrow cells induced by signal nuclide ¹³⁴Cs retention in skeleton*

Zhu Shou-Peng, Xia Fen and Yang Wei-Dong (Suzhou Medical College, Suzhou 215007)

Abstract The skeleton transference and the retention dynamics of *i.v.* ¹³⁴Cs are investigated. Results indicate that the retention percentage of ¹³⁴Cs in skeleton could be characterized by $R(t) = 0.0029 \exp(-0.121t)$ with $T_{1/2} = 5.73$ d; the chromosome aberration percentage of somatic bone marrow cells increases obviously, the relationship between injected dose (X in kBq/g) and the chromosome aberration percentage can be expressed as $Y = 0.0561 X^{0.427}$. It should be noted that sustained elevation of chromosomal aberration rates induced by ¹³⁴Cs can be upto the 47 th d.

Keywords Mutagenic effect, Bone marrow cells, Retention, ¹³⁴Cs, Skeleton, Mice

1 Introduction

¹³⁴Cs is a signal nuclide released by the accident of nuclear power plants, and one of the most important products in heavy nuclear fission. People are paying close attention to internal contamination of radiocesium to human health through ecological environment^[1]. ¹³⁴Cs is easily absorbed into blood through various ways^[2]. In recent years, with the continuous development of nuclear power plants and its wide scope of use in production and research fields, the number of persons contacting ¹³⁴Cs has been increasing constantly. It is worth noting that the sustained mutagenic effect of ¹³⁴Cs is closely related to its accumulative characteristics and there is no resolution yet. So, it is necessary to study the metabolic peculiarity of internal contamination of ¹³⁴Cs in skeleton as well as its sustained mutagenic effect on bone marrow cells.

2 Methods and results

2.1 Retention and absorption dose estimation of 134 Cs in skeleton

Experiments were carried out on 30 sexually mature BALB/c strain mice of 21 ± 2 g. Animals were randomly divided into 6 experimental groups. Mice of experimental groups were given *i.v.* injection of 46.25 kBq/g ¹³⁴Cs in ¹³⁴Cs₂CO₃. Animals were sacrificed by decapitation through 10 h, 2, 6, 15, 30, and 47 d intervals. The left femora were immediately excised and put into a scintillation vial, their radioactivities were determined with an EKCO well type scintillation counter by the aid of NaI(Tl) crystal. Results show that the retention percentage of ¹³⁴Cs in skeleton falls gradually with the prolongation of observing time t in d (see Table 1). The retention of ¹³⁴Cs in skeleton can be characterized by

$$R(t) = 0.0029 \exp(-0.121t)$$

and the half life $T_{1/2}$ in skeleton is 5.73 d.

From the cumulative radioactivities of 134 Cs in skeleton the cumulative absorption dose^[3,4] can be calculated (see Table 1) and can be expressed as^[5]:

$$D(r_{\mathbf{k}}) = \sum_{\mathbf{h}} A_{\mathbf{h}} S(r_{\mathbf{k}} \leftarrow r_{\mathbf{h}})$$

here D is dose of r_k in skeleton in mGy; A_h intake of radioactivities of r_h in whole body in k Bq·d; S conversion factor of mGy/(kBq·d).

Table 1 Retention and absorption dose in skeleton after *i.v.* injection of $46.25 \text{ kBq/g}^{-134} \text{Cs}$

Time after injection	Number of mice	Retention/ kBq·g ⁻¹	Dose/ mGy	
10 h	5	4.71	3.98	
2 d	5	2.34	15.00	
6 d	5	1.17	40.50	
15 d	5	0.34	85.90	
$30 \mathrm{d}$	5	0.04	130.49	
47 d	5	0.02	156.00	

^{*}The key Project Supported by National Natural Science Foundation of China Manuscript received date: 1996–07–20

2.2 The sustained mutagenic effect in Fig.1. bone marrow cells induced by ^{134}Cs

Sexually mature male BALB/c strain mice of $21\pm 2g$ were randomly divided into 7 groups as well as corresponding control group. Animals of experimental groups were given single i.v. injection of ¹³⁴Cs with 0.0093, 0.093, 0.93, 5.6, 9.25, 46.25 and 231.25 kBq/g, respectively; mice of control group, physiological saline. Internal contaminated mice were decaptitated after 24 h. Colchicine of $4 \mu g/g$ was injected i.p. 5.5 h before killed. Samples of femora were obtained quickly from the sacrificed animals, and put into 75 mmol/L KCl hypotonic solution. Then femora were broken to pieces by operation forceps. Bone marrow cells were collected and incubated at 37°C for 40 min in 75 mmol/L KCl hypotonic solution, then fixed, dispensed onto the slides and stained with Giemsa solution. Metaphase cells were analysed for chromosome aberrations.

Table 2 shows that there is a positive correlation between the chromosome aberration rates and the amount of intake of 134 Cs; as a whole, among the types of chromosome aberrations, chromatid breakage was predominate. The chromatid gap and exchange are shown in

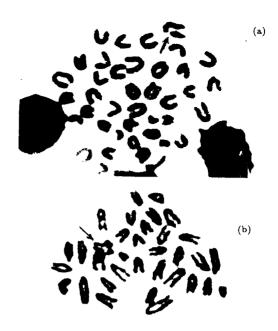


Fig.1 Chromatid gap (a) induced by *i.v.* 0.093 kBq/g 134 Cs and chromatid exchange (b) induced by *i.v.* 46.25 kBq/g 134 Cs in bone marrow cells

Table 2 Chromosome aberration percentage in bone marrow cells induced by i.v. ¹³⁴Cs

Radioactivity/	No. of	No. of	Chromatid aberration		Chromosome aberration		No. of	Abnormal	
kBq·g ^{−1}	mice	MPS	CMB	Gap	CME	CSB	Gap	AC	percentage
0	5	1000	1	1	0(0.20)	0	0(0)	2(0.20)	0.20 ± 0.45
0.0093	5	1000	2	1	0(0.30)	0	0(0)	3(0.30)	0.30 ± 0.45
0.093	5	1000	8	2	$0(1.00)^*$	0	0(0)	10(1.00)	$1.00 \pm 0.71*$
0.93	5	1000	10	2	0(1.20)*	0	0(0)	12(1.20)	$1.20 \pm 0.67^*$
5.6	5	1000	16	5	0(2.10)**	0	0(0)	17(1.70)	2.10±1.08**
9.25	6	12 00	22	2	1(2.08)**	3	0(0.25)	24(2.00)	2.33±0.75**
46.25	5	1000	29	13	1(4.30)**	3	1(0.40)	46(4.60)	4.70±0.45**
231.25	5	675	91	7	1(14.67)**	1	0(0.15)	85(12.59)	14.82±3.98**

Notes: In Tables 2 and 3, *P < 0.05, **P < 0.01; MPS—Metaphase scored, CMB—Chromatid breakage, CME—Chromatid exchange, CSB—Chromosome breakage, AC—Abnormal cells; Data in parentheses express the corresponding aberration percentage

The relationship between injected dose (X in kBq/g) of ¹³⁴Cs and chromosome aberration percentage in bone marrow cells can be expressed as

$$Y = 0.0561 X^{0.427}$$

Animals were randomly divided into 6 experimental groups and corresponding control groups. Mice of experimental groups were given i.v. injection of $46.25 \text{ kBq/g}^{-134}$ Cs. Then through 10 h, 2, 6, 15, 30, and 47 d intervals animals were decapitated. Samples of femora were obtained and chromosome specimens were made with the aforementioned method.

Metaphase cells were analysed for chromo-

some aberrations. Table 3 indicates that chromosome aberration percentages are elevated significantly only after 10 h injection of 134 Cs. Among the types of induced chromosome aberrations, chromatid breakage is predominant in company with few chromosome breakage and microbodies. It should be noted that chromosome aberration percentages were still at high level up to 47 d.

Table 3 Sustained aberration percentages of chromosomes in bone marrow cells induced by i.v.46.25 kBq/g ¹³⁴Cs

- · ·	No. of	No. of	Chromatid aberration		Chromosome aberration			Abnormal
	mice	MPS	CMB	Gap	CSB	Gap	Microbody	- percentages
Control	5	1000	1	1(0.2)	0	0	0(0)	0.20 ± 0.45
10 h	5	1000	31	8(3.9)	2	0	0(0.2)	4.10±1.34**
$2 \mathrm{d}$	5	1000	2 6	4(3.0)	2	0	0(0.2)	3.20±0.76**
$6 \mathrm{d}$	5	1000	23	3(2.6)	3	0	1(0.4)	3.00±0.61**
$15\mathrm{d}$	5	1000	15	5(2.0)	1	0	0(0.1)	2.10±0.89**
$30 \mathrm{d}$	5	1000	28	3(3.1)	0	0	ò(0)	3.10±1.34**
$47 \mathrm{d}$	3	6 00	7	1(1.3)	0	0	0(0)	1.33±0.29**

3 Discussion

The specific property of action for radionuclides in the body is closely related to its selective transportation and retention in tissues, and has the intimate relationship with mechanism of its action ^[6]. Therefore, the dynamic course of transportation and retention by ¹³⁴Cs internal contamination determined its dose distribution in tissues. So, the dynamic law of ¹³⁴Cs internal contamination was the basis of explaining the action of ¹³⁴Cs in organism.

Our study^[7] shows that the chromosome aberration rates in bone marrow cells induced by ¹³⁴Cs are significantly higher than that in spermatogonia; the somatic cells are more sensitive to ¹³⁴Cs than reproductive cells. Present experimental results indicate that the main type of the chromosome aberrations in bone marrow cells induced by ¹³⁴Cs internal contamination was chromatid breakage; this is related to the cell cycle and the types of the chromosome aberrations induced by radiation. The hemopoietic cells in bone marrow are in continued differentiation and reproduction stage, and more cells are in S-period and G_2 -one^[8]. These cells suffer internal contamination, and show chromatid breakage in the metaphase of cell division^[9,10].

References

- 1 Halford D K. Health Phys, 1983; 45:745
- 2 Zhu Shou-Peng. Radiotoxicology. Beijing: Atomic Energy Press, 1992; 443
- 3 ICRP Publication 30, Part 1: Limits for intake of radionuclides by workers. Vienna: ICRP Press, 1976; 88
- 4 Lee Siging. Radiation dose. Beijing: Atomic Energy Press, 1986:403
- 5 Snyder W S. "S", Absorbed dose per unit cumulated activity for selected radionuclides and organs. Pamphlet: MIRD, 1975; No.11
- 6 Zhu Shou-Peng. Autoradiographic tracing. Beijing: Atomic Energy Press, 1995:150
- 7 Zhu Shou-Peng, Xia Fen. J Health Toxicol (in Chinese), 1993; 7(4):227
- 8 Moore RC, Bender M A. Int J Radiat Biol, 1984; 46(4):451
- 9 Hirai M, Van Buul PPW. Mutat Res, 1982; 93(2):419
- 10 Parshad R, Sanford K K, Jones G M. Mutat Res, 1985; 151(1):57