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Abstract

A unified plasma sheath model and its potential equation are proposed. Any

higher-order approximation analytical solutions for the unified plasma sheath potential equa-
tion are derived by double decomposition method.
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1 Introduction

Problein of various plasma sheaths around
an electrode/grid or substrate boundary has
been an active topic since 1980’s and received
increasing attention due to its wide applications
in practice of cold plasma and for commercial
purpose.[t~14]

Although great progress has been achieved,
profound theories, deep understanding, and
unified methodologies for various plasma sheath
still remain to be investigated. Several kinds
of plasma sheath models have been developed,
for example, for the description of the various
plasma devices in low pressure gas discharge
plasmal*~11  for the biased substrate in a VAD
with cathode spots(l14 and plasma-assisted va-
por deposition processes, and in a negative-
jon plasma and so on('2~13] Therefore, under-
standing of the plasma sheath is very significant
to plasma technique applications.

In this paper, we present a unified physi-
cal modcl which include several special kinds of
plasma sheath above. Using double decompo-
sition method, any higher-order approximation
analytical solutions of the potential for the uni-
fied plasma sheath (PS) are derived.

2 A unified physical model of PS

So far several plasma sheath models for
the cold plasma have been investigated.[!~15]
Now, let us consider a unified physical model
for various PS. Physically, characteristics of PS
models in the cold plasma devices are summa-
rized as follows: (1) When an object (such as

Plasma sheath, Double decomposition method, Approximation analytical solu-

a flat metal electrode/grid or substrate) is in-
serted into an unmagnetized homogeneous two-
(or more) component quasineutral plasma, a PS
around the object is formed. Negative or zero
voltage may be applied to the object for differ-
ent purposes. (2) The PS is a transition layer,
in which the charge non-neutrality and the po-
tential are suddenly decreased whereas the most
region of plasma adjacent to the sheath is the
quasineutral . (3) In the PS region, therefore,
the ionized particles are accelerated, gain ki-
netic energy, then impact with the other parti-
cles and finally deposit on the object (e.g. elec-
trode or substrate). (4) In general, the electron
density obeys a Boltzmann distribution:

—eU)
kT,

(1)

Ne = ng exp(

where U is the plasma potential, ng the plasma
density, & the Boltzmann constant and T, the
electron temperature. The electrons in the cold
plasma are in local thermodynamic equilibria.
(5) A shifted Maxwellian distribution of ion
with a thermal energy is less than the directed
energy. The ion energy includes both kinetic
energy and potential energy which are con-
served in the PS at any position. So $M* (vZ -
v§) = —eU, the ion velocity in the sheath is
v; = vo\/1—2eU/(M+*vZ), where e is elec-
tronic charge, vp the thermal velocity of the ion,
\/2ZkpT./M+*, where M* is the ion
mass, Z the average charge number of the ions.

(6) The distribution of the ion density can be
obtained from the continuity equation of the ion

i.e., Vg =
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For the VADI[114], the ion density may be
of cosine form, n; = %ﬂﬂ}, where f is lon
current fraction, I the arc current, »; the lon
velocity, 8 for a cylindrical system is the angle
between the radius vector through an arbitrary
space point and the normal direction to cath-
ode surface, and p the distance from the sheath
edge to the cathode center. (7} Certain negative
ions may be formed in the plasmal'®. Thus the
negative ions become the third component in
the plasma. In such a plasma, electrons would
be initially expelled into the uniform ambient
plasma before the any species of more heavy
ions have a chance to move. This creates a lo-
calized region of net positive charge adjacent
to the electrode. As time increases, the posi-
tive ions adjacent to the electrode are absorbed
by the electrode or substrate. The fraction of
negative lons in the plasma is ¥ = negative-
ion density (ng )/positive-ion deusity (nd). In
this case electron distribution in a quasineu-
tral negative-ion plasma becomes n; = (1 —
¥)Ynoexp(—eU/kT.). Whereas the distribution
of the negative ions is of the Boltzmann equi-
libria

Ny

—elU
) (3)
where T_ is the temperature of the negative
ions. The positive ions are attracted to and
cventually implanted in the clectrode to which
the negative voltage is applied. That is why
these positive ions can change the surface prop-
erties of the metal electrode or substrate, and
this effect has significant practical applications.
This plays a very important role in the PS. (8} A
few dust particles may be produced if impurity
species are introduced into the plasma device
and ionized. We discuss the cold positive dust
ions with density ngq and having unifurm charge
and mass. Suppose that the dust ions are much
heavier than the electrons and tlie working ious,
on the time scale of the dust motion they can be
considered to be in Boltzmann equilibria. Their
densities are thus given by

n~ = yng exp(

—elU

i)

na = njo exp(

(4

where T} is the temperature of dust ion. Of
course, the dust ions (either possitive or nega-
tive) may have the similar distribution to the
working ions only with different charges and
masses. It is easy to deal with them in the
same way. (9) For a typical discharge pressure
of P = 1.33Pa, the electron mean free path
is about A=4.82x10~3ml*¥, X is always much
larger than the Debye length (A 3=1.3x10"%m),
it implies that the collision can be neglected.
Fig.1 shows the main picture of PS model for
one dimensional case.
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Fig.1 Main picture of plasma sheath model
0 ® @ o represent electron, negative iow, positive
ion and dust ion, respectively

Based on the physical picture above, the
set of normalized equations we use to model
a four-compouent plasma with a quasineutral
density are described by the nonlinear equations
of contimiity and motion for the cold positive
ions iu steady state

V. .(ntvt)=0
vt. Vvt = _VU

For the cold negative ions

{ Vi(n~vT)=0
v™-Vv- = +VU/M
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For the dust ions in steady state

{ V - (nava) = 0

va-Vva=—1vU (7)

where v, v~ and vy are the velocities of the
working positive ion, negative ion and dust ion,
respectively. nt, n~ and n4 are the densitics
of the working positive, negative and dust ion,
respectively. The parameter M = M~ /M* is
the mass ratio of negative ion to working pos-

— —eU - X —
ﬂ—kBeTe,f—n, S =
nT = % = vyexp(—t_7
fle = 3= = (1 — ) exp(—

For a cylindrical system, ¢ = % and «

is a parameter introduced for the cylindrical
system{*¥ and corresponds to the case in which
the ion density has the above cosine form for
the cylindrical system(®], but & = 1 for the
planary system. vg and wvqg are the thermal ve-
locities of the working positive ion and dusty

7
€2  Hg?

for two-dimensional planary systeni, and

8%y

1.0

S On 0, On
or

" ar

P

+ - = o[—(1—9)exp(—7) + cexp(tin) — yexp{—t_7n) + T+ B -1+-ﬁ7)]

itive ion. The parameter p = My/M™t is the
mass ratio of dust ion to working positive ion.

Thus the Poisson’s equation determines
the potential in terms of the densities of the
four species above

Vp= —fe + 7t — A7 + 7g (8)

The laboratory variables are related to the
normalized variables in this set of equations by

Y — eokpTe
YRIC IRV s oy
) at =54 = L 3
’ "o /140 (9)

77)7 'ﬁd = z_ioo' = UexP(tiU)»
a=H*p %cos(,), B=(

iii-) cos(fy),

ion, respectively. vj, is the velocity of the work-
ing positive ion at the boundary. H is the dis-
tance from the cathode to the surface of the
substrate. Using the simultaneous Egs.(5)~(9)
together with Egs.(1)-(4), and after some calcu-

lations, we can derive the normalized potential
equation for a unified PS as the following

(10)

+ &(1 &)] = af[—(1 — ) exp(—n) -+ v exp(t;n) — yexp(—t_n) + \/;__] (11)

1+ 7

for two-dimensional cylindrical systein. To further simplify, we can reduce Egs.(10) and (11)
to one dimensional case for both planary and cylindrical systems as following

0%
o2

Obviously, several special cases are in-
cluded in Egs.(10~12): (1) v # 0 and 3 # 0 but
o = 0 for a negative-ion plasma. (2) 8 # 0 but

= o0 = 0 for normal cold plasma and so on.

{ £=c=0.n(0) =
€

S

1l
/i

= af[—(1 — v) exp(—7) + o exp(tin) — yexp(—t_n) + \/—T];___:ﬁn]

6, 1(8) = 1, %gL =40

(12)

(3) 0 # 0 but ¥y = 8 = 0 for dusty plasma, and
so on. The boundary conditions on the surface
of the substrate or electrode and on the plasma
sheath edge for Eqgs.(10)~(12) respectively are

SL/ (13)

oy _
' B¢ =0

Y ar
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where § is the sheath thickness defined by the
boundary potential 7,. Since the ions in the
cold plasma carry kinetic energy of tens or
hundreds of electronvolts, corresponding to a
streaming velocity of about 10* m/s, which is
much higher than the Bohm velocity (about 5 x
103m/s). Therefore, the potential at the sheath
edge may be set to nearly zero. Thus, the phys-
ical problem of the unified PS, Egs.(5~8), be-
comes to solve simultaneously Eqgs.(10)/(11) or
Eq.(12) together with the boundary -value con-
ditions Eq.(13).

proposed an effective analytical method - the
decomposition method(!*] as well as double de-
composition method (DDM) for solving differ-
ential and partial differential equations which
may be strongly nonlinear and stochastic cases
for boundary-value problems.[}7~19]

At first, we derive an approxirnate solution
for Eq.(12) with the boundary-value conditions
Eq.(13) by the DDM. In the operator format of
the decomposition method(*>~19] the Eq.(12) is
written as

3 Approximate solutions of PS Ln+ Rn+Nn=0 (14)
In recent years, Adomain and Rach have With
L =d%/dé?, R=0,Nn = f(n) = a[~(1 =) fi(n) + o f2(n) — vf3(n) + fa(n)] (15)
where nonlinear terms
1
= exp(—17), = exp(tin), = exp(—t_n), = 16
f1(n) = exp(=n), fa(n) = exp(tin), f3(n) = exp(—t_n), fa(n) T pe (16)
where t; = ’,‘% and t_ = %i— are the normalized temperature of the dust ion and the negative ion,
respectively. The nonlinearity is expressed by the Adomian polynormials as following
f(n) = 3520 An€" (17)
= Yonola(—(1 = 7)ay + 0al —ya) +ay)lE"
where the A, corresponds to the four Adomian’s polynomials dependent on the al, a2, a3 and

4
n’
1 2
n’' aﬂ1

a
a

ai _ ldﬂfl
" nldgn

n=1,2,..., 00, respectively. So the key step is to calculate the Adomian polynomial coefficients
a3 and a?, which can be calculated by(*®]

= hn(n0),i = 1,2,3,4.

According to the algorithm above, fi(n), fé(n), fa(n), and f4(n) are easily generated. Therefore,
it can be got various order components of the solution as follows

Mo = co,0 + €1,0§

m = co1 + e1,1€ — a[—(1 — y)ay — yaj + gad + aj]
M2 = co2 + €126 — a[—(1 —¥)a} — vaj + oaj + aj]

{ m =cos+craf — a[—(1—7y)aj —yaj +oa3 + aj] (18)
L ’m = Com + Cl,mf - a[_(l - V)a:rln—l - 7a72n—1 + Ua?n—l + afn—l]m_(gnln—_l)
Using the double decomposition method17~19] the solution has the form of
(e o]
n=¢o+ 1€ — Z[*(l —Y)an_z+0a;_5 — yup_p +ap_5" /n(n — 1) (19)

n>2

with
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{ Co = Z::O Co,m

€1 =Y m=0C1m

(20)

where ¢p,, and ¢y ,, are to be determined by the boundary conditions (Eq.13). It is easy to

obtain the above coeflicents:

4

Co,0 = 7o

Co,i =0,t=1,---,m
_ 1

1,0 = (7 — M0)

1,1 =

Il

C1.2
Ix2

o™}

Thus various order approximation solutions can
be expressed as

$o = co,0 + €1,0€

d=do+m
¢2 = 1+ M2
$3=¢2+ 1M (22)

¢m = ¢m—1 + Nm

4 Conclusion

The basic steps of solving above PS by the
DDM are as follows.

(1) Compute cq,,m and ¢y, from Eq.(12)
by matching the solution approximates to the
boundary conditions Eq.(13). (2) The Ado-
mian polynormials, a!, 1=1,2,3, are generated
for each nonlinearty. (3) The solution compo-
nents 7, are obtained from Eq.(18), which de-
pends on a} (:=1,2,3). Since a}, depends only on
no and 7;, ab depends only on 79,7m;,72, ctc, so
7, components are calculable step by step. (4)
Compute the m-order approximation analytical
solution ¢,, from Eq.(22) and get the accuracy
of the solutions when m — oc.

It 1s secn from the above that all of the
procedures are calculable step by step and de-
pends on the previous low-order component val-
ues. Therefore, the m-order approximation se-
ries of solutions ¢,, can be obtained. In gen-
eral, however,the 3 ~ 6 order approximation
solutions are satisfactory for the real PS.

In conclusion, the unified PS model is
proposed and any higher-order approximation
analytical solutions for the unified PS equa-

§(m = m0) — 5 (a5 + oaf — (1 - 7)aj)
3(’¢b]—no)-—°—'52(a}+aaf—(1—7)af)

Cim = %(qsb — ¢o) — m(m-1)

(21)

(ap1 +0oak,_y — (1 —7)aZ )

tion are obtained by the double decomposition
method. The approximation analytical solu-
tions can be used to study properties of various
plasma sheaths, which includes several special
cases, such as:

(1) For c = 0 but v #0 and 8 # 0, the ef-
fects of various fractions of negative ions on the
plasma sheath can be investigated(*213] (2) For
o =+ = 0 but 8 # 0, the results are reduced to
Refs.[4,14]. (3) For =0 and v =0 but ¢ # 0,
the effects of the dust ion on the plasima sheath
can be studied.

The DDM is an effective procedure to ana-
lytically solve a wide physical problems since it
solves nonlinear problems rather than lineariz-
ing them, the resulting solutions are physically
more realistic. It can be extended to two or
more dimensional plasma boundary problems.
The topic will be investigated elsewhere.
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