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Abstract  Alternative versions of the ZM model are extended to asymmetric nu-
clear matter by including p meson degree of freedom in the Lagrangian. The extended
madels are then used to study the thermodynamical properties of asymmetric nuclear
matter at finite temperature. The critical temperature for a liquid- gas phase transition
in nuclear matter and its dependence on asymmetry parameter are calculated. The
limiting temperature Tj;pm, which reflects Coulomb instability of hot nuclei, is studied.
The calculated results are compared with that given by the original ZM model.
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1 INTRODUCTION

The interest of studying the liquid-gas phase transition in nuclear matter(l] has
increased recently with the attempt by the EOS Collaboration to extract critical ex-
ponents of fragmenting nuclear systems produced in the collision of 1 GeV /nucleon Au
nuclei with a carbon target[?! and with the extraction by the ALADIN/LAND Collabo-
ration of a caloric curve resulting from the fragmentation of the quasiprojectile formed in
the collision Au+Au at 600 MeV /nucleon exhibiting a behavior expected for a first-order
liquid-gas phase transition.!®] Since the system formed in the collision is of finite size and
with the Coulomb interaction, its limiting temperature T}y, is also important.[! Below
Thim, the nucleus can exist in equilibrium with the surrounding vapor. But above Tjim,
the nucleus is unstable and will fragment. This is the so-called Coulomb instability of
hot nuclei.

Although the Walecka modell® is successful in describing the properties of both infi-
nite nuclear matter and finite nuclei, it gives too large a compression modulus (540 MeV).
Recently, there have been various prescriptions for modifying the Walecka model, such as
the nonlinear sigma-omega modell®, the scalar derivative coupling modell”, the quark-
meson coupling modell®], ete. In the ZM model, a derivative coupling between baryon and
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scalar meson is introduced. It yields much more reasonable value of 225 MeV for the com-
pression modulus. The ZM model has also been applied to discuss the liquid-gas phase
transition of nuclear matter and the Coulomb instability of hot nuclei.[¥! Recently, vari-
ants of the ZM model were implemented and applied to dense cold['% as well as warml(!!l
nuclear matter. In these new versions of the ZM model, a nonlinear coupling between
the nucleon and the vector w meson is introduced. A recent finite nuclei calculation!!?
shows that the modified version, ZM3 model, improves upon the criginal ZM model re-
garding the energy splitting of levels due to the spin-orbit interaction in finite nuclei. It
is therefore of interest to apply these new versions in studying the critical phenomena of
a nuclear system and compare the results with those given by the original ZM model.

The paper is organized as follows. In section 2, we will introduce the equation of
state (EOS) for bulk nuclear matter at finite temperature in the ZM models and a two
phase equilibrium model for the study of the Coulomb instability of hot nuclei. Section
3 contains the results and some discussions.

2 MODEL

After rescaling the nucleon field as ¢ — m*1/24) for all ZM models and rescaling the
vector meson field as w, — m*w, for ZM2 and ZM3 models, the Lagrangian in the ZM

models reads

L= $i7,00+m(—g, Py, - —F,‘,,,F""’ + —m2 2 wwh)
V4o 7T Y — (M — mPg )y
+1(8,00%0 — m2o?) — 1L, - I + 1m2b, - b¥ (1)
In the above equation, M is the rest mass of nucleon and  is the Pauli operator. o, w,
and b, are the neutral scalar meson field, neutral vector meson field and isovector vector
meson field, with parameters m,, g,, ™My, 9o, M, and g, , respectively. The effective
mass M~ is defined as M* = m*M with m* = [1 + g,0/M]|7}. Fo = 8w — dw,,
I-,‘m, = 3,,5,, - a,,i;‘, and o and A have the following values for different models:for ZM,
a=0,8=1,IM2,a=1,8=1;for ZM2,a =2, =1.
In a mean-field approximation(MFA), the meson fields are replaced by their mean
field values, ¢p, wy and by. By using the standard technique in the field theory, we
obtained the expression for the pressure of the system as

— Cf, *x 2 M* 1-m 2 Cz 2
P = 2™ 202( B ) + Vel
b Y s [ O n8) 4 20 @
q=n,p 3(2I)3 Ek ! ?

In Eq.(2), B} = V2 + M*? and we introduced sz= 2M?/m2, C = g2 M?/m? and
C? = g?M?/m?. Fermi distributions are defined as nq(k) {exp[(B} — vy)/kT] + 1} 7}
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and 7 (k} = {exp{(E} + v,)/ksT] + 1}7! (g = n,p) and the quantity v, is related to
the usual chemical potential y, by the equations v, = u, — guwp + gobo/2 and p, =
Bp — Guwo — gobo/2 with wo = gup/m? and by = g,ps/(2m2) where p3 = pp — pn.
The chemical potentials for neutron and proton are determined by their densities: p; =
[2/(27)%] f @k[ny(k) — Aig(k)] (g = n,p). The neutron density p, and proton density
pp are also related to the total density p and asymmetry parameter a by relations:
pn = (1 + a)p/2 and p, = (1 — a)p/2. The effective mass satisfies the following self-
consistent equation,

1—m*= C!C C a+2ﬂ) 2 + C m36+1) /dak—[nq(k) + nq(k)] (3)

g=np

Now we discuss the two-phase equilibrium model, which will be used to study the
Coulomb instability of hot nuclei. We consider the hot nucleus as a uniformly charged
drop of nuclear liquid at a given temperature T and with a sharp edge, in both thermal
mechanical and chemical equilibrium with the surrounding vapor. A set of two-phase
coexistence equations is, therefore, obtained by requiring equality of temperature T,
pressure p, neutron chemical potential g, and proton chemical potential u, of the liquid
and vapor phases:

p(T,p,,0,) + Poout(p, ) + Paurf(T, p,) = P(T: Py ) (4)
Ty pp0a;) = (T pur ) (8)
bp(T,prr0) + Boou(p,) = Bp(Tipy ), (6)

where subscripts I and V stand for liquid and vapor, respectively. In the liquid phase,
the Coulomb and surface effects have been included. For a uniformly charged sphere,
poou(p) = 822 /(5R) and peout(p) = Z2e?p/(5AR) where Z, A and R are,respectively,
the charge, mass numbers and radius of the liquid droplet.

The pressure given by the surface tension of the liquid droplet is expressed as
Dourf(T,p) = —27(T)/R. Following Ref9], the formula for the temperature depen-
dence of the pressure tension 7(T) suggested by Goodman et all¥ is wsed: ¥(T) =
(1.14 MeV fm~ )1 + 3T/(2T¢))[1 — T/Tc)*/?, where Tc is the critical temperature for
infinite symmetric nuclear matter.

3 RESULTS AND DISCUSSIONS

In the numerical calculations, we will use the coupling constants given in Ref.[11]
(C? = 219.3,443.3; C2 = 100.5,305.5 for the ZM2 and ZM3 models, respectively). The
coupling constant g, between the p meson field and nucleon field in the present model is
taken the same as in the usual ZM model,?l ie., C2m*? = (M*?/m2)g? = 54.71, which
is determined from p — 27 decay %l
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We will use the EOS given by chemical-density (u—p) isotherms to discuss the liquid-
gas phase transition in nuclear matter. The critical temperature T¢ can be determined
by the condition of the inflection point of x4 — p isotherms,

(g—;;)T —0, (37‘:)T ) @)

In asymmetric nuclear matter, the proton and neutron are not in chemical equilibrium
although they may be in thermal equilibrium[gl. So, their chemical potential are not
related to each other. Since the proton and neutron have different chemical potentials,
they shall also appear to have different critical temperatures T5 and TZ, respectively.
But we cannot imagine that the kind of nucleons with high critical temperature can
stick together after all the other kind of nucleons with lower critical temperature have
boiled off. Therefore, We must choose the lower of T and T2 as the correct critical
temperature.

For the convenience in the comparison between the results here and those given by
the non-relativistic theories, we define a reduced chemical potential fas G=u~ M. In
Fig.1, we present the ji — p isotherms for infinite asymmetric nuclear matter with o = 0.4
and at various temperatures, calculated with the ZM2 model. In the case of asymmetric
nuclear matter, fi, and i, separate. At lower temperatures, both of fi, —p and i, —p
isotherms exhibit the form of two-phase coexistence, with an unphysical region for each.
When temperature T increases, the unphysical regions get smaller. We can then find
a critical temperature % for neutrons and a critical temperature T7 for protons. The
result for the asymmetry parameter a = 0.4 is T = 11.92MeV and TE = 21.00MeV.
As mentioned above , we should choose the lower of the two critical temperatures, T% as
the correct critical temperature for asymmetric nuclear matter. For a given asymmetry
o, we obtain a critical temperature T¢. Inversely, we obtain a critical asymmetry for a
given temperature. The resulted Te — a¢ diagram is shown in Fig.2, calculated with the
ZM, ZM2 and ZM3 models. The solid and dashed curves stand for the results with and
without the p meson degree of freedom. The phase diagram separates the T — « space
into two regions. In the exterior region, nuclear matter can exist in gaseous phase only,
while in the interior region both liquid and gaseous phases are allowed. For intance, the
critical asymmetry at T = 12MeV in the usual ZM model without the p meson degree
of freedom is a = 0.84, above which only the gaseous phase can exist in nuclear matter.

It is seen that the critical temperature T¢ decreases monotonously as the asymmetry
parameter & increases in all the three ZM models. The critical temperature in different
ZM models decreases in the sequence: ZM, ZM?2 and ZM3 in any asymmetry case. Now
let us discuss the effect of including the p meson degree of freedom. One can find that
the inclusion of the p meson degree of freedom gives an additional asymmetry effect on
the chemical potentials y, and pressure p. As a result, the chemical potential of neutron
shifts up and the chemical potential of proton shifts down further. The increase in the
gap between g, and yp, shall decrease the critical temperature in asymmetric nuclear
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Fig.1 i, — p and i, — p isotherms of infinite
asymmetric nuclear matter with the
asymmetry parameter ¢ = 0.4 and at various
temperatures, caleulated with the ZM2 model

T, I MeV

Fig.2 Phase diagram of the critical
temperature T plotted against the critical
asymmelry parameter a¢ for infinite nuclear
matter, calculated with the ZM, ZM2 and
ZM3 models with (solid curves) and
without{dashed curves) the p meson

matter. This result is explicitly shown in Fig.2. The curves with the p meson drop more

quickly than those without the p meson.

Next, we discuss the Coulomb insta-
bility of hot nuclei by calculating the limit-
ing temperature T};y,, above which the set
of coexistence equations {4~6) has no so-
lution. We show in Fig.3 by solid (dashed)
curves the mass number dependence of the
limiting temperature T}, in the ZM, ZM2
and ZM3 models with (without) the p me-
son for the nuclei along the 8-stability line:

Z=054-03x10724%% (8)

It is seen from Fig.3 that the six curves
have a similar trend: the limiting temper-
ature decreases monotonously as the mass
number A increases, but the rate of the
decrease is smaller for larger A. It is also

T | MeV

Fig.3 Mass number dependence of limiting
temperature Tj;m calculated by using the
ZM, ZM2 and ZM3 models with(solid curves)
and without (dashed curves) the p meson

seen that the limiting temperatures have the same sequence as the critical temperature
for different ZM models. This result indicates that the hot nuclei described by the ZM
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model is more stable than that described by the ZM2 or ZM3 models. This conclusion
is consistent with the calculated critical temperatures of asymmetric nuclear matter (see
Fig.2). Considering the different values of compression modulus in different ZM mod-
els: 224 7MeV for ZM; 198.3MeV for ZM2 and 155.7 MeV for ZM3, we find a rule:the
softer the matter, the lower the Ty and Ty,,. We have also noticed that the limiting
temperature T}, calculated with the p meson is always higher than the corresponding
one without the p meson and exhibits explicitly an additional asymmetry effect. As a
result, the heavier hot nucleus becomes more stable when the p meson degree of freedom
is included in the Lagrangian of the system. We have also examined the equilibrium
values of the asymmetry parameter ay for vapor phase and found that they are always
negative when without the p mesons in the system. The result is not reasonable in physics
and is very different from that in the non-relativistic theories,/'¥] where the asymmetry
parameter of vapor is always positive. When the g meson degree of freedom is included,
however, the situation changes, i.e., the asymmetry ay in the vapor phase becomes pos-
itive. Tt indicates that it is necessary to include the p meson degree of freedom in the
description of asymmetric nuclear system. We have also shown in Fig.3 an experimental
point (Tiim = 6.5MeV for A ~ 125) given by Natowitz et af,'* who summarized their
early experimental results.['® We found that this experimental point is very close to the
result predicted by the usual ZM model. The results given by the ZM2 and ZM3 models
is 1 or 2MeV lower than the experimental data.
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