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Abstract

The inversc Abel transform 1s applicable to optically thin plasma with cylindrical

symmetry, which is often encountered in plasma physics and inertial (or magnetic) confinement
fusion. The filter back-projection technique is modified, and then a new method of inverse Abel

transform is presented.
Keywords

1 Introduction

The radial distributions of plasma physi-
cal parameters are very important in plasma
research. If plasma source is symmeirical and
optically thir, then by means of inverse Abel
transform, the actual radial distributions are
calculated from the projected intensity profiles.
For cxample, from measured soft X-ray emis-
sion, the radial intensity profile can be deter-
mined through Abel transforin. For the com-
mon case wherc the source is axial symmetri-
cal and optically thin, numerical methods(!~3]
have been developed to calculate the radial dis-
tribution. This paper adopts a modified filter
back-projection technique to calculate Abel in-
version.

2 Abel integral equation and its
transform method

Fig.1 shows a circular disk of plasma par-
allel to the z — y plane and with thickness Az.
The photon emitters are assumed to have a cir-
cularly symmetric distribution with respect to
the z axis. The radiation is considered to be
isotropic and there is assumed no absorption in
the plasma. I(z) denotes spectral radiance in
the y direction at a distance z from the y — 2
plane (in energy per unit time, unit area per-
pendicular to y direction, unit frequency inter-
val, and unit solid angle). If the emission co-
cfficient of plasma is €(r} at the distance from
the origin, a study of spectral radiance from the
plasma column of length 2y and cross section
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Az Az gives the equation

+70
I(z)AzAz = Z e(r)AzAyAz

—~Ya

(1

Passing over to infinitely small volume elements
and making use of the symmetry, one gets

I(z) = 2/0y° e(r)dy (2)

Y = +v/r? — 22 is introduced in Eq.(2), then the
mtegral equation can be
R
_ e(r)rdr
I(z) = 2/; (r2 — z2)1/2

By using Abel’s transformation, this equation
can be transformed to

1 (7 (dI/dz)dz
e(r) = —= @ =2 (4)

s T
where I(z) is the distribution of observed radi-
ance and g(r) is the distribution of the wanted
emission coeflicients.

(3)

Observer

Fig.1 Geometric relations
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The filter back-projection technique used to calculate Abel transform [Eq.(4)] is simply
described as follows.

3 Filter back-projection algorithm

The two-dimensional reconstruction problem is first considered. Supposing that f(z,y) is
the emission coeflicient in one fixed plane section (z, y) of a test object, P(t,8), the integral along
the line L(¢,8), i.e.,

P(t,8) = P;[L(t,0)] :/ Fds (5)
L(t,0)
where L(t,0) is the line whose normal goes through the origin making angle # with the positive
z-axis and having length ¢ (oo < t < o), L(¢,86) is the line:
zcosf + ysinf = ¢ (6)

P(t,6) is equal to the two-dimensional Fourier transform(* of f in polar-coordinates, i.c.,
P(w,8) = /+°° /+°° f(z,y)expliw(zcosb + ysinb)|dzdy (7)
If P(L) is known for all lines L, then f is given by Eq.(7) and the Fourier inversion formula is
flz,y) = (1/4)n> /Oﬂ do/+°° P(w,8)expliw(zcosd + ysing)] | w | dw (8)

where the | w | comes from the transformation of Jacobian into polar-coordinates. With calcu-
lating, one can obtain a discrete reconstruction formula fy depending on filter function @, given
by
n—1 oo
folz,y) = (d/n) Z Z p(tk,0;)®(zcosh; + ysinh; — ty) (9)
Jj=0k=—0c
where ty = &kd, £ =0, £1, £2, ---and | k |[< 1/d; 7 = 0,---,n — 1. n is the number of views; d is
the ray space distance between parallel rays in cach view.
We choose SL filtering function given by Shepp and Logan(®!
21— psin(nw/2)

d =
(M= m—" 5 (10)
where n = 2t/d. When ¢t = kd, k=0, +1, +2,---, Eq.(10) becomes
&(kd) = —~2/[x*d*(4k% — )],k = 0, £1, £2, --- (11)

If f(z,y) is circular symmetric, f(z,y) in Egs.(5-9) only depends on r = v/z2 + %2, not on
6. Therefore, p(tx,6;) doesn’t depend on projection view angle #;, only on #,. Thus they are
written as f(z,y) = e(r), p(tx,0;) = I(zx) and substituted into Eq.(9). Then it is obtained

n—1 oo
e(r)y=(d/n) Y Y I(zi)®(rcosh; — z) (12)
1=0k=—0o0
Exchanging the summations of j and k in Eq.(12), one can obtain
e(ry=d > I(xx)¥(r— ) (13)
k=—0c
where

n—1

P(r—zg) = (1/7r)/(; ®(rcost — zp)df = lima—o |(1/n) Z ®(rcosf; — ) (14)

j=0
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The integral in Eq.(14) is numerically cal-
culated using Gaussian integral method. From
the projection data I{z), we can obtain the
sourcc intensity radial distribution e{r).

4 Numerical experiments and re-

sults
e(r) = {

the off-axis peak curve.l®]

In these equations, the outer radius is
taken to be unit, i.e., R = 1 in Fig.1. The cor-
responding I{z) values to be used as input to
Eq.(13) are easily obtained by direct integration
of Eq.(2) or Eq.(3). The number of data points
used is 41 (K=41). The approximate e;(ry)
are recalculated using the algorithm of Eq.(13)
from I{x). And then at each point, the differ-
ence between the calculated and actual value,
Ag(rg), is computed. Finally, the standard de-
viation is calculated from

K 1/2
o= {Z |Ae(re)|? /K} (17)

k=0
The actual and calculated values of the

0.75 + 1272 —
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Fig.2 e(r) and e;(r) vs 7 for Gaussian curve

For comparison, we also use Barr’s
method!? to calculate g(r). In this method, the
z axis and 7 are thought of as divided into equal
increments A, so that, zx = nA, 7. = kA,
R = NA, where n and k are integers between

and including 0 and N. In each interval, I(z)

3273
16/27(1 + 67 — 1572 4+ 873) 0.25<r <1

Two functions describing different shapes
of e(r) vs r were used to gencrate test data:
one is

e(r) = exp(—977) (15)

a Gaussian curve with =0 and oc=1/3; the
other is

-
0<r<0.25 (16)

Gaussian curve [Eq.(15)] are plotted in Fig.2.
The actual and calculated values of thic off-axis
peak curve [Eq.(16)] arc plotted in Fig.3. In
these figures, the curves express the actual val-
ues, the little circles express the calculated val-
ues by inverse Abel transform using the modi-
fied filter back-projection techniques as Eq.(13).
From Figs.2 and 3, the difference between of
the actual value £(r) and the calculated value
€1(r) is very small. For the Gaussian curve,
o = 6.5 x 1071; for the off-axis peak curve,
o = 5.3 x 1074 Both ¢ values are very small.
This shows that the accuracy of the Abel in-
version obtained by the modified filter back-
projection algorithm is very high.

08 I

Q4 F

e(r) and e(r)

—: Actual value

02 F 4. Calculated value
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Fig.3 €(r) and €;1(r) vs 7 for off-axis pcak curve

is approximatly
I(z) = an + byz? (18)

For a given 7 = 7y, then, Eq.(4) reduces to

N
Ek:AEaann (19)
n=Fk
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Finally, we can obtain

N
1
£ = E ;,)ﬁknlrh E>2 (20)

N
1
= S Benln, k<2
€k = n:OlBk <

Eq.(20) is used to calculate £(r) from the pro-
jection values I,, = I(z, ). For two functions ex-
pressed as Eq.(15) and Eq.(16), the calculated
results are plotted in Fig.4 and Fig.5. In these
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Fig.4 ¢(r) and €,(r) vs r for Gaussian curve

5 Conclusion

This paper mainly describes a modified fil-
ter back-projection algorithm applied to Abel
inversion. And the numerical experimental re-
sults show that the reconstructed values do very
agree with the actual values. It also demon-
strates that it is feasible and efficient to calcu-
late inverse Abel transform using the modified
filter back-projection algorithm. We will use
this method to obtain the X-ray radial distri-
bution profiles from the measured X-ray emis-
sion in inertial confinement fusion experiments
on the high power laser device of “ Shenguang

figures, the curves express the actual values,
the little circles cxpress the calculated values
by inverse Abel transform using Barr’s method.
Comparing Fig.4 with Fig.2, Fig.5 with 3, re-
spectively, we can know that the errors of Barr’s
method are larger than that shiown in Fig.2
and Fig.3. For the Gaussian curve in Fig.4,
o = 1.0 x 1072; for the off-axis peak curve in
Fig.5, o = 1.39x 1072, Both ¢ values calculated
from Eq.(20) arc larger than the o values calcu-
lated from Eq.(13). Thus, our method is more
accurate than and superior to Barr’s method.
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Fig.5 ¢(r) and e1(r) vs r for off-axis peak curve
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