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Abstract Nonlinear feedback functional method is presented to realize synchrouizatioll 0f 

hypcrchaos iii higher dimensional system s．New nonlinear feedback functions and superposi— 

tions of linear and nonlinear feedback functions are also introduced to synchronize hyperchaos． 

Thc robustness of the method based on the flexibility of choices of fcedback functions is dis— 

cussed． By coupling well—known chaotic or chaotic—hyperchaotic systems in low—dimensional 

systenls，such as Lorenz system，Van der Po1 oscillator，Duffi ng oscillator and R5sster system ， 

ten dimensiona1 hyperchaotic systems are forlned as the model systems．It Call be found that 

there is not any noticeable difierence in svnc11ronizatioIl based on the numbers of positive 

Lyapunov exponents and of dimensions． 

K eywords Hyperchaos．Svnchronization．Nonlinear feedback fllnctions．Tcn—dinlension． 

1 Intr0ducti0n 

Recently．svnchr0nizati0n of hyperchaos in 

higher dimensional systems has become one of 

fundamental questions and much more impor． 

rant sub ect in chaos control theories and ex． 

periments due to a great potential possibil． 

ity of applications．[ 
． Examples of hypcr． 

chaos can be found[2 21]in systems  such as 

via hyperchaotic signals are more secure and 

the procedure relates to the design of com- 

munication schemes by active—passive decom- 

position methods． Since hyperchaos exsits in 

nature．1aboratory and the other social fields 

fsuch as economy，market 1，synchr0nization of 
l：yperchaotic systems ll~-lS therefore become a 

new area of active research and call for new 

methods． Since it is in general di佑cult to 

arrays of Josephson junctionsj coupled elec— find a region in parameter space where hy— 
tric oscillators．artificial neural networks．ar． 

rays of chaotic systems． multi-mode lasers． 

and coupled map lattices． Svnchronization 

of chaos and hyperchaos have been studied 

in the light of technical applications such as 

secure communications．[7，l1，17，1 81
． It is very 

likely that control and svnchronizati0n 0f chaos 

and hyperchaos play important roles in the 

workings of biological mid artificial neural net 

works．Although some progress has been made， 

an all—embracing unified method for synchro- 

nization of chaos and hyperchaos is missing， 

Fang[3～61
． 
K0carev et 71

．

Pen et血 l1] and 

Ali[[：2 1 4j et ä 1ave recently studied synchro- 

nization of lfigh—dimensional systems  in which 

the transmitted signal is hyperchaotic[7，l1]
． re— 

spectively． It is believed that communications 

perchaos exists．one m ethod for synthesizing 

higher dimensional systems in a systematic way 

waLs proposed by Kocarev and Parliz．【，J Thus 

we only use standard low—diinensional systenls 

with well—known dynamics to constrnct llyper— 

chaotic systems． In the other words．1lyper— 

chaotic systems can bc fornled by coupling 

well known low—dimensional chaotic systems 

or chaotic—hyperchaotic systems ．[7，22] Such a 

hyperchaotic system behaves[ 9·20]as a single 

chaotic or hyperchaotic system with new and 

rich dynamic behavior or it may behave as clus— 

ters of chaotic—hyperchaotic systems  or it may 

evell exhibit the behaviors of an assembly of 

individual chaotic—hyperchaotic systems．Quite 
often，a complex physical or biological system 

can be described in terms of the behaviors of 
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simpler chaotic—hyperchaotic systems through a 

mechanism dubbed dynamic dissipation． In 

this work．we study svnchr0nizati0n of hyper— 

chaos in coupled chaotic—hyperchaotic systems 

using the method of nonlinear feedback func— 

tions which was applied to chaos as well as 

spatiotemporal chaos recently．[12 1 4]
． S0 far． 

most of control and svnchr0nizati0n are based 

on the concept of linear feedback．The purpose 

of this paper is essentially to develop a nonlin— 

ear feedback functional method for synchroniz— 

ing hyperchaos in very higher dimensional dy- 

namical systems，such as the coupled Chua’s 

circuits which has been extensively applied to 

many fields and the RLVPD with ten dimen— 

Monal systems which was formed by well—known 

Lorenz system，Van der Pol oscillator，Duffing 

oscillator and R5ssler system． 

2 Variable feedback control 

The method of variable feedback control 

has been used by a number of authors[2 29]t0 

study control and synchr0nizati0n of chaos and 

hyperchaos．Let us give a brief description here． 

We consider two n—dimensional autonomous dy— 

nalTlical systems described by the difierential 

equations 

X=r(x) 

Y =F(Y)+G(X，Y) 

G fX， 

(1) 

(2) 

here the state vectors X ，Y ∈ R“ are 

n—dimensional vectors with components 

X1， 2，⋯ ，Xn and ， ，⋯ ， ，respectively． 

The vecfor functions F and G have the com- 

ponents F1， ，⋯ ， and G1，G2，⋯ ，Gm， 

m < n．respectively． The dynamical system 

of Eq．f 1)is variably called the driver，master 

or sender system while the system of Eq．f21 is 

called the response，slave or receiver system． 

The function F(Y1 is a replica of the func— 

tion F(X)and G(X，Y1 is called the feedback 
function． Svnchronizati0n between the driver 

and response systems is said to bc achieved if 

X = Y ．An important property of the feedback 

function is that when svnchr0nizati0n has been 

realized，it vanishes．that is 

G(X，Y)=G(X，X)=0 when X=Y (3) 

The state vector X(X =x(t1)describes the 
‘goal’orbit for the response system to seek 

and follow． After svnchr0nizati0n has been 

achieved．the time evolution of the driver and 

the response systems are identica1． Thc syn— 

chronization conditions G(X，Y1：G(X，X1= 
0 when X = Y can be satisfied by a very 

large(perhaps infinitely large)number of func— 
tional forms of G(X．Y1．Some simple forIns of 

G(X．Y1 that have been used previously[23，1l】 
a re 

Gi(X，Y)=Ki(Yi—Xi) 

=  ∑ 
J=1 

( 一 )；i=l，2，⋯ ，n 

Eqs．f4)and f5)contain n and n2 feedback pa- 

rameters，as well as Ki， ，respectively．How— 

ever， synchr0nizati0n may be achieved by a 

fewer number of the parameters，in some cases 

synchronizati0n is possible by adjusting only 
one parameter． Ⅵk show below that linear as 

well as nonlinear forms of the feedback func— 

tions are effective in synchronizing hyperchaotic 

systems． The important point to note here is 

that the flexibility in the choice of GfX．Y1 pro- 
vides robustness and efficiency to the method 

for dealing with chaotic and llyperchaotic sys— 

tcms  of diverse nature． Obviously,a dynami— 

cal systeIn can be synchronized by a variety of 

choices of the feedback function G(x，Y)．The 
main purpose of this work is to study some sam- 

pie choices of the nonlinear fcedback function 

t0 synchr0nize／c0ntr0l hyperchaos in two rep— 

resentative sets of coupled chaotic—hyperchaotic 

systems． According to our knowledge，most 

methods of variable feedback control of chaos 

have been restricted mainly to linear forIns of 

the feedback function． In this work we have 

mainly used nonlinear forms of feedback flmc— 

tions．The linear ones and combinations with 

nonlinear ones are also applied to synchronize 

hyperchaos．In essence，the feedback function is 

a forcing term which can have varied nature and 
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no wonder why various forms of the feedback 

function can synchronize a given hyperchaotic 

system ．For representative samples of the non— 

linear feedback functions(NFF)，we have used 
the following kinds of form： 

Gi(X，Y)=Bi tanh[Ki(Iq— )] 

G (x，Y)=Ai sin[ ( — )] 

Gi(X，Y)=Ki(Yi—Xi)+Bitanh[Ki(Y／一 )]+Ai sin[Ki(Y~一Xi)] 

where Ai Bi，and Ki， i = l{ 2， ⋯ ，礼 are 

adjustable feedback parameters．Numerical re— 
suits will show that all of the above forms of 

the feedback function and combinations of them 

can synchronize our model systems． 0ther 

forids of the feedback function are conceivable． 

The m ain idea of the algorithms of nonlin— 

ear feedback synchronization corresponding to 

the abeve NNF is that nonlinear feedback sig— 

nal，G (x，Y)corresponding to the NFF，is as— 
signed to perturb the dynamical variables di。 

rectly． Ttie NFF is designed for the response 

system to be synchronized with the hyperchaos 

of the driver system．Therefore，the NFF tends 

to zero when the svnchronization is realized．In 

the other words．the nonlinear signal forces the 

response system to be synchronized with one 

desired hyperchaos． 

For the response system to synchronize．it 

is necessary that all of its Lyapunov exponents 

are negative．【̈ J Let 6Y be a small change in Y ． 

Then in the linear approximation．we have the 

variational equation 

=VY(F(X，Y)+a(X，Y))． Y (10) 

here VY represents the gradient with respect 

to Y ．For computing the Lyapunov exponents 

of the response system，Eqs．(1)，(2)and(10) 
are solved simultaneously． Svncllronization of 

chaos is achieved only if all of Lyapunov exp o- 

nents of the response system are negative．[1 7]In 

fact．for measure of the efficiency of the method． 

the transient time of svnchronization．T iS de— 

fined as tlle time required for A(t1=0 where 

△(t)=∑ l 一 l or 
i= 1 

a(t)= 

T depends on the method and its Va]Ale8 of the 

parameters chosen．This is a qualifying measure 

for both of centrel and svnchronizatioI1． 

Control and svnchronizatioI1 are said to be 

achieved if the dynamical system describing the 

time evolution ofthe difierence e= Y — X ．i．c． 

the error equation 

=F(Y)+G(X，Y)一F(X) 

= F(X+e)+G(X，X+e)一F(X) (13) 

has a stable fixed point at e= 0．Anether way 

of saying this is that we achieve svnchronization 

if llY—xll一 0 and G(X，Y)一 0 as t一 。。， 
where X is a desired fgoal1 state． The above 

svnchronization conditions can be satisfied by a 

very large number of linear and nonlinear func． 

tional forms of GfX．Y1．The feedback scheme 

of Eqs．(1-3)and Eq．(13)not only includes the 
approaches in current references and our sug— 

gestions but also has the flexibility of introduc． 

ing all possible new feedback functions and thus 

giving robustness to the method of feedback 

centre1． F0r example．recently．Kocarev and 

Parlitz have used an active．．passive decomposi．． 

tion scheme for svnchronization．【‘7J This scheme 

decomposes the dynamical systems into 

X=F(X，s) 

Y=F(Y，s) 

s=h(X) 

(14) 

(15) 

(16) 

=h(X，s) (17) 

M athematically， this decoInposition scheme 

is included in our approach if we choose 
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G(X，Y)=F(Y，s)一F(Y)．It,has been showll 
the mathen~atica1 eql：ivalence})etween their de— 

coxnt)osition schexlle axld the approacl：es of Pee— 

ora axl(1 Carrol1．[17·18]Therefore
． the feedback 

s(；hellle of Eqs．f1-31 is of tlllivers；-t1 fbrmulation 

which includes centre1 approaches as wel1 as 

svI1c11ronization．The evidences aX'C t1：at a dy— 

llax：：ica1 systen1 can be synchronize：1})v a wtri— 

ety of choices of the feedbaek f'llXICtion． 

3 M odels of hyperchaotic system s 

coupled Chua’s circuits which is llallled the 

CCC and given by Ref_[1] 

1= ( 2～ 1一 ) (18) 

2= 1一X2+X3+K(X5一X2) 

Using the constrnctive xnetl：od a1)ove．wc 

have formed and studied two typical hyper— 

chaotic systems in this work． 

The first systen1 is axl lIlidirectioIla11y— whex e 

{ 

{u 

X3= 一 2 

X4=n( 5一 4一 ) 

x 5 4一 5+ 6 

x6= 一(3X5 

bX：+(J．5(a—b)(1 1+1 l—l 1—1 1) 

bX4+0．5(u—b)(1 4+1 l—l 4—1 1) 

This is a six—dimensiona1 hyperchaotie system． 

Here og． ，a and b are constants． T11c l。st 

Chua’s circuit[Eqs．(18)一(20)]are coupled to the 
second one[Eqs．(21)一(23)]in Sl：ch a way that 
the difference，K(X5一 2))between the signals 
‘axld X。，is introduced into the first circuit 

÷ a coupled tex·111．The response system for the 

CCC Xllode1 is defined as follows． 

y1=n(Y2一y1一f,j) 

= y1一 +Y3+ (y5一 ) 

l u 

f 

f26) 

f27) where 

Y3= 一 

y4= ( 一y4一 ) 

y5= y4一 + y6 

YG= 一 

bY：+0．5(a—b)(1 y1+1 l—l y1—1 1) 

by4+0．5(a—b)(1 y4+1 l—l Y4—1{) 

For the 6-dimensiona1 CCC system with fixed 

paraineters f(Y= 10 = 14．87，a = 一1．27， 

b = 一0．68． 七 = 0．021． we have obtained 

Lyapunov exponential spectra(0．4335，0．4125， 

()．0009，0．00000，一3．7522，一3．8741)，in which 
there are three positive ones． It was also 

showll in Ref．[1]the robustness of the hyper— 
chaos in tlle CCC way in whicl1 it may be pos— 

sible to obtain hyperchaotic attractors with N 

positive Lyapunov exponents in a chain of N 

1l11id ectiona11v—coupled Chua’s circuits． But 

they have not shown synchronization of hyper— 

chaos yet． C：ould we realize it? That is OUX’ 

subject in this work． 

f19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

f28) 

f29) 

(32) 

(33) 

The second system with ten dimensions 

called the RLVPD system is formed by C011一 

pling well—．known RSssler hyperchaotic sys—· 

rein．Lorenz systexn and Van der Pol—D I佑ng 

oscillator．【19J Thc difrerentia1 equations for the 

RLVPD system are given by 

1=一z／( 一ax1一x2) (34) 

x2 1一 2～ 3+ C1 7 

x3=fiX2 

- o-1( 4一X5) 

(35) 

f36) 

f37) 
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pX4一X5一 4 6+CI2 7+C3X8(38) 

6= 4 5— 6 6 

7= 一 8一 9+ C4X4+ C5X 1 

X8= 7+ 0．25Xs+ Xlo 

X9= 3+ X7X9 

X lo -0．5X9+ 0．05Xlo 

(39) 

Illaill issne of svnchr0nizati0n of hyperchaos． 

The．variable feedback control method is ro— 

bust iiI tile sense that a given dynamical sys 

tem Call be svnchr0nizcd with its replica by a 

variety of choices of forms of the feedback time— 

tion G(X，Y)and by a variety of choices of pa— 
rameter values in each functional form． This 

implies that temporal svnchr0nizati0n of llyper— 

chaos becomes simpler when tile m ethod of vari一 

41) able feedback functions is employed 

(42) 

(43) 

The response system for the RLVPD model is 

defined in the same way as in the CCC case． 

X 1，X4，X7 and X8 are used for couplings ofthe 

RLVPD system．The couplings are chosen such 

that for a range of random initial conditions 

the coupled systems rem ain bounded．possess 

two or more positive Lyapunov exponents．and 

exhibit global chaotic behavior．The couplings 

shown above are found sarisfactory for the pur— 

pose of our study．The parameter values used 

for the RLVPD system are given by = 300． 

Q= 0．35， = 45，P= 28，b=8／3，o1= 10． 
The initial conditions are aS follows：using ran— 

dom numbers for X 1，X2 and X3，and the others 

are zero for the driver system but using rall— 

dom numbers for Ya． = l and the others 

are zero in the response system．The RLVP D 

has two or more positive Lyapunov exponents 

for a large set of values of the coupling pa- 

rameters Ci，i= lj 2，3，4，5．For examples，for 

C1= l， = l，CI3= 37 and C4= C5= 0，the 
Lyapunov exponential spectra for tile RLVPD 

are three positive ones：f0．198．0．333．0．0081．a 

0．000，and six negative f—1．599，一2．999，一32．874， 
一 701．014，⋯ )．For C1= l，C2= l， = 20 
and C4 = C5 = 0．the RLVPD has two posi— 

tive Lyapunov exponents(0．262j 0．031)and a 
zero and seven negative ones． Our numerical 

results show that many sets of values of the Ci 

can be used for the study of hyperchaos in the 

RLVPD system ． Nore that the RLVPD is a 

ten—dimensional hyperchaotic system which has 

been never investigated yet． 

4 Svnchr0nizati0n 0f hyperchaos 

Based OI1．the above model hyperchaotic 

systems．we are iii a position to foCUS on tt1．e 

Now．1et us see the results of hvDercha0tic 

synchronization in the CCC and RLVPD sys— 

terns by various NFF．respectively． For illus— 

trating svnchr0nizati0n of l1．yperchaos in the 

II1．odel CCC and RLVPD by the NFF．we have 

calculated all the Lyapmmv exponents of the 

svnchr0nized systems and tim transition time． 

All of Lyapunov exponents of the synchronized 

systems are found to be negative．S uch as．for 

the replica of the CCC system f l8—231 synchro— 

nized by the NFF G2= 一10tanh(5(y1一X1) 
and G5=一10tanh(5(y5一 5))，the Lyapunov 
exponents are f0．0000．一0．0004．一0．0007． 0．O0l8， 

一 0．29l8．一50．70531． 

For ttle synchronized replica of tlle RLVPD 

(Eqs．(34—43))under the above two groups of 
connection coeHicient(1)C1 l，C2 l，C3 

37， = C5= 0 and(2)C1= l，C2= l， = 
20，C4 = C5 = 0，and K1 = 12，K2 = l3， 

K3 = 14，K4 = 15，Ks = 16，K6 = 17， 

K7= 500，Ks= 880，K9= 2000，K 10= 200l， 

after nonlinear feedback by the NFF 0f No．3 iiI 

Table l，the Lyapunov exponents are f—l 3．85，一 

l3．94．一17．69．一l7．97．一26．04．一499．99．一877．91．一 

1769．40，一2020．15，一2794．07)and f—l3．49．一l3．87． 
一 l7．86，一l8．23，一25．58，一497．45．一867．83．一915．88． 

一 2000．95． 2024．651． respectively． These evi— 

dences show that 1lyperchaotic svnchr0I1izati0Il 

is realized successfully and all of l1．yperchaos 

for our models is synchronized very well by ttle 

NFF． 

For measuring effi ciency of synchroniz ing 

hyperchaosj we have also computed the average 

transition time ．7-．over l00 initial conditions 

for each choice of tim feedback function．Thc re— 

sults are given iI1 Tabs．1—2 for above two l1．yper— 

chaotic models．It is seen from Table l that the 

No．8 of NFF can realize svl1chr0nizati0Il with 

faster transition time than the linear fecdback 

one．Anot!mr interesting trend is that the aver— 

age transition time 7-in the case of combinations 
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of the NFF is always smaller than the average 

7．of the constituents of the combinations．For 

example．No．8 of the NFF in Tab．2 is of fastest 

transition time than the other NFF above since 

it has more superposition of ttle NFF and linear 

one． The more superposition，the faster tran— 

sition time． The nonlinear feedback functions 

and their superposition fincluding with linear 

one)can work much more efficiently for syn— 
chronization of llyperchaos．The above results 

may provide a way to expedite synchroniz ation 

in teal experimental situation． 

Table 1 Transition time r versus some feedback functions in the CCC system for the above parameters 

in the text 

Table 2 Comparison of average transition time r over 100 initial conditions for various forms of the 

feedback fllnctions in the RLVPD systems．The feedback parameters values are as follows：A ： 100， 

Kl： 12{K2： 13，K3= 14{K4： 15{Ks： 16，K6= 17，K 7= 500，K s： 880，K9： 2000，K l0= 2001 

5 Discussion and conclusion 

In this paper we have presented the nonlin— 

ear feedback functional method to realize syn— 

chronization of hyperchaotic systems in lligher 

dimensional dynamical systems．For the model 

hyperchaotic systems，we have introduced the 

six—dimensional and ten—dimensional system by 

coupling(1)the coupled Chua’s curcuits(CCC 
system)and (2)the coupled R6ssler hyper— 
chaotic attractor Lorenz attractor and n der 

Pol—Dumng oscillator fRLVPD system1． The 

couphngs gave us nypercnaotlc systems possess— 

ing two and three positive Lyapunov exponents． 

The number of positive Lyapunov exponents 

of a coupled system is not equal to the sum 

of the number of positive Lyapunov exponents 

of its components． W e have studied synchro- 

nization of cases involving two and three posi— 

rive Lyapunov exponents．Our main foCUS llaS 

been to illustrate the flexibility and robustness 

in the method of nonlinear feedback control by 

considering several examples of nonlinear and 

linear feedback functions and their superposi— 

tions．M ain numerical results for the cases that 

we have studied are as follows． f l1For fced— 

back both linear and nonlinear feedback func— 

tions can synchronize hyperchaotic systems．AU 

of the NFF can reach the hyperchaotic syn— 

chronization but some of the NFF wlfich can 

be found is luckier and better than linear one 

because it has faster transition time and only 

one or two NFF applied to one or two equa— 

tions ofresponse system are enough for synchro— 

nization． (2)The feedback functions obtained 
by superposition of known linear and nonlin— 

ear feedback functions can also synchronize tlle 
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same hyperchaotic system as wel1 as they are 9 

more e伍cent than their each component does． 

ODe can explore larger classes of feedback func． 1 0 

tions to synchronize hyperchaos．V anticipate 

that a realization of the existence of such a 1 

flexibility will help design appropriate feedback 
， 。  

controls in rea1 experimental situations．From ～ 

the point of view of synchronization by vari一 1 3 

able feedback control，we do not find any dif- 

ference depending on the numbers of positive 

Lyapunov exponents and of dimensions． W e 14 

have considered here the flexibility in synchro- 

nization but the same flexibility also exists for 1 5 

both contro1 and svnchr0nizati0n of spatiotem- 16 

Doral chaos．[12 14]This method therefore has 

the potential of practical applications．For ex- l』 

am ple，in secure comm unication suggested in ，。 

Refs．[7，11]hyperchaotic signals are transmitted 
to mask a message and a synchronized receiver 1 9 

system is set to recover the message． Thus it 

may im prove security and obtain a more e伍一 20 

cient encoding of information． 

9 1 
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