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Abstract

Nonlinear feedback functional method is presented to realize synchronization of

hyperchaos in higher dimensional systems. New nonlinear feedback functions and superposi-
tions of linear and nonlinear feedback functions are also introduced to synchronize hyperchaos.
The robustness of the method based on the flexibility of choices of feedback functions is dis-
cussed. By coupling well-known chaotic or chaotic-hyperchaotic systems in low-dimensional
systems, such as Lorenz system, Van der Pol oscillator, Duffing oscillator and Réssler system,
ten dimensional hyperchaotic systems are forined as the model systems. It can be found that
there is not any noticeable difference in synchronization based on the numbers of positive

Lyapunov exponents and of dimensions.
Keywords

1 Introduction

Recently, synchronization of hyperchaos in
higher dimensional systems has become one of
fundamental questions and much more impor-
tant subject in chaos control theories and ex-
periments due to a great potential possibil-
ity of applications.'~14. Examples of hyper-
chaos can be found?~21 in systems such as
arrays of Josephson junctions, coupled elec-
tric oscillators, artificial neural networks, ar-
rays of chaotic systems, multi-mode lasers,
and coupled map lattices. Synchronization
of chaos and hyperchaos have been studied
in the light of technical applications such as
secure communications.[7117.18] It is very
likely that control and synchronization of chaos
and hyperchaos play important roles in the
workings of biological and artificial neural net-
works. Although some progress has been made,
an all-embracing unified method for synchro-
nization of chaos and hyperchaos is missing.
Fallg[3~6], Kocarev et alm, Pen et af'V and
Ali[[12~14] ¢t gl have recently studied synchro-
nization of high-dimensional systems in which
the transmitted signal is hyperchaotic(™11
spectively. It is believed that communications

, re-
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via hyperchaotic signals are more secure and
the procedure relates to the design of com-
munication schemes by active-passive decom-
position methods. Since hyperchaos exsits in
nature, laboratory and the other social ficlds
(such as cconomy, market), synchronization of
hyperchaotic systems has therefore becomne a
new area of active rescarch and call for new
methods. Since it is in genecral difficult to
find a region in paramecter space where hy-
perchaos ecxists, one method for synthesizing
higher dimensional systems in a systematic way
was proposed by Kocarev and Parliz.!”] Thus
we only usc standard low-dimensional systems
with well-known dynamics to construct hiyper-
chaotic systems. In the other words, hyper-
chaotic systemns can be formed by coupling
well known low-dimensional chaotic systems
or chaotic-hyperchaotic systems.[722] Such a
hyperchaotic system bchaves1220 a5 a single
chaotic or hyperchaotic system with 11ew and
rich dynamic behavior or it may behave as clus-
ters of chaotic-hyperchaotic systems or it may
even cxhibit the behaviors of an assembly of
individual chaotic-hyperchaotic systems. Quite
often, a complex physical or biological system
can be described in terms of the bchaviors of
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simpler chaotic-hyperchaotic systems through a
mechanism dubbed dynamic dissipation.[®! In
this work, we study synchronization of hyper-
chaos in coupled chaotic-hyperchaotic systems
using the method of nonlinear feedback funec-
tions which was applied to chaos as well as
spatiotemporal chaos recently.12~14  So far,
most of control and synchronization are based
on the concept of linear feedback. The purpose
of this paper is essentially to develop a nonlin-
car feedback functional method for synchroniz-
ing hyperchaos in very higher dimensional dy-
namical systems, such as the coupled Chua’s
circuits which has been extensively applied to
many fields and the RLVPD with ten dimen-
sional systems which was formed by well-known
Lorenz system, Van der Pol oscillator, Duffing
oscillator and Réssler system.

2 Variable feedback control

The method of variable feedback control
has been used by a number of authors>~29 to
study control and synchronization of chaos and
hyperchaos. Let us give a brief description here.
We consider two n-dimensional autonomous dy-
namical systems described by the differential
equations

(1)
(2)

X = F(X)

Y = F(Y) + G(X,Y)

Gi(X,Y) = Ki(Y; - X))

Gi(X,Y)=B:) K;(Y; - X;); i=1,2,n

i=1

Egs.(4) and (5) contain n and n? feedback pa-
rameters, as well as K;, B;, respectively. How-
ever, synchronization may be achieved by a
fewer number of the parameters, in some cases
synchronization is possible by adjusting only
one parameter. We show below that linear as
well as nonhlinear forms of the feedback func-
tions are effective in synchronizing hyperchaotic
systems. The important point to note here is
that the flexibility i1 the choice of G(X,Y) pro-
vides robustness and efficiency to the method
for dealing with chaotic and hyperchaotic sys-
tems of diverse nature. Obviously, a dynami-
cal system can be synchronized by a variety of

here the state vectors X, Y € R"™ are
n-dimensional  vectors  with  components
X1,Xs,-++, X, and Y7, Y5, .-+, Y, respectively.
The vector functions F and G have the com-
ponents Fy,Fs,---,F, and Gi,Gs, - ,Guy,
m < n, respectively. The dynamical system
of Eq.(1) is variably called the driver, master
or sender system while the system of Eq.(2) is
called the response, slave or receiver system.
The function F(Y) is a replica of the func-
tion F(X) and G(X,Y) is called the feedback
function. Synchronization between the driver
and response systems is said to be achieved if
X =Y. An important property of the feedback
function is that when synchronization has been
realized, it vanishes, that is

G(X,Y)=G(X,X)=0 when X =Y (3)

The state vector X(X = X(¢)) describes the
‘goal’ orbit for the response system to scck
and follow. After synchronization has been
achieved, the time evolution of the driver and
the response systems are identical. The syn-
chronization conditions G(X,Y) = G(X,X) =
0 when X =Y can be satisfied by a very
large (perhaps infinitely large) number of func-
tional forms of G{X,Y). Some simple forms of
G(X,Y) that have been used previouslyl23:11]
are

(5)

choices of the feedback function G(X,Y). The
main purpose of this work is to study some sam-
ple choices of the nonlinear feedback function
to synchronize/control hyperchaos in two rep-
resentative sets of coupled chaotic-hyperchaotic
systems. According to our knowledge, most
methods of variable feedback control of chaos
have been restricted mainly to lincar forms of
the feedback function. In this work we have
mainly used nonlincar forms of feedback func-
tions. The linear ones and combinations with
nonlinear ones are also applied to synchronize
hyperchaos. In essence, the feedback function is
a forcing term whicli can have varied nature and
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no wonder why various forms of the feedback
function can synchronize a given hyperchaotic
system. For represcentative samples of the non-
linear feedback functions (NFF), we have used
the following kinds of form:

Gi(X,Y) = K;[L — e(¥=%)] or [1 - Fi(¥i=X0)]

where A4,, B;, and K;, = = 1, 2,
adjustable feedback parameters. Numerical re-

Gi(X,Y) = Bitanh [K;(Yi — X)) (7)

(6) Gl(X,Y) = A;sin [K,()’, — X,)] (8)

Gi(X,Y) = Ki(Y; — X;) + Bitanh [Ki(Y; — Xi)] + A;sin [Ki(Y; — X)) (9)
A(t) = (12)

sults will show that all of the above forms of
the feedback function and combinations of them
can syuchronize our model systems. Other
forins of the feedback function are conceivable.
The main idea of the algorithms of nonlin-
car feedback synchronization corresponding to
the above NNF is that nonlinear feedback sig-
nal, G;(X,Y) corresponding to the NFF, is as-
signed to perturb the dynamical variables di-
rectly. The NFF is designed for the response
system to be synchronized with the hyperchaos
of the driver system. Thercfore, the NFF tends
to zero when the synchronization is realized. In
the other words, the nonlinear signal forces the
response system to be synchronized with one
desired hyperchaos.

For the response system to synchronize, it
is necessary that all of its Lyapunov exponents
are negative.!” Let §Y be a small change in Y.
Then iu the linear approximation, we have the
variational equation

QZTY = Vy(F(X,Y)+ G(X,Y)) e6Y (10)

here Vv represents the gradient with respect
to Y. For computing the Lyapunov exponents
of the response system, Egs.(1), (2) and (10)
are sotved simultaneously. Synchronization of
chaos is achieved only if all of Lyapunov expo-
nents of the response system are ncgativc.[”] In
fact, for ineasure of the efficiency of the method,
the trausient time of synchronization, 7 is de-
fined as the time required for A(t) = 0 where

A(t):Z|K—X1-| or (11)

7 depends on the method and its values of the
parameters chosen. This is a qualifying measure
for both of control and synchronization.

Control and synchronization are said to be
achieved if the dynamical system describing the
time cvolution of the differcnce e = Y — X, i.e,
the error equation

é=F(Y)+ G(X,Y) - F(X)

=F(X+e)+GX,X +e)—F(X) (13)

has a stable fixed point at e = 0. Another way
of saying this is that we achieve synchronization
if |[[Y —X|| — 0and G(X,Y) — 0 as t — oo,
where X is a desired (goal) state. The above
synchronization conditions can be satisfied by a
very large number of linear and nonlincar func-
tional forms of G(X,Y). The feedback scheme
of Eqgs.(1-3) and Eq.(13) not only includes the
approaches in current references and our sug-
gestions but also has the flexibility of introduc-
ing all possible new feedback functions and thus
giving robustness to the method of feedback
control. For example, recently, Kocarev and
Parlitz have used an active-passive decomposi-
tion scheme for synchronization.!”] This scheme
decomposes the dynamical systems into

X = F(X,s) (14)

Y = F(Y,s) (15)

s = h(X) (16)

s = h(X,s) (17)

Mathematically, this decomposition scheme

is included In our approach if we choose
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G(X,Y)=F(Y.s)—~F(Y). It has been shown
the mathematical cquivalence between their de-

coupled Chua’s circuits which is named the

CCC and given by Ref.[1]

composttion schieme and the approaclies of Pec- X = a(Xs— X1 — fr) (18)
ora and Carroll.[17-18] Tlercfore, the feedback B ‘
scheme of Eqs.(1-3) is of universal formulation ]
which includes control approaches as well as Xo=X1-Xo+ X3+ K(X; —X2) (19)
synchronization. The evidences are that a dy-
namical systerm can be synchronized by a vari- Xy = —BX, (20)
ety of chioices of the feedback function. )
. X = X5 — X4 — u 21
3 Models of hyperchaotic systems s =l o fu) 1)
Using the construetive method above, we X5 = X4 = X5 + Xo (22)
Lhave formed and studied two typical hyper- .
chaotic systems in this work. Xo = —BXs (23)
The first systemr is an unidirectionally-  where
fo=0X14+05(a—0)(| X1 +1]|—-]X:1-1)) (24)
fu=0Xs +05—0)(| Xa+1]—]X4—1]) (25)
This is a six-dimensional hyperchaotic system.
Here o, 3, @ and b are constants. The first Y, = —3Y, (28)
Chua’s circuit [Eqs.(18)-(20)] are coupled to the
sccond onc [Egs.(21)-(23)] in such a way that Yy =a(Ys — Yy — fo) (29)
the difference, K(X5 — X»), between the signals
X5 and X,, is introduced into the first circuit .
as a coupled term. The response system for the Yo =Ys-Y: + Y (30)
CCC model is defined as follows.
Yi=oY,-Y - f) (26) Ys = —8Y; (31)
Yo=Y - Yo+ Y3 + K(Ys — Y2) (27) where
fy=0Y1405(a-0)(|Y1+1]—|Y1—-1]) (32)
fo=0Ya+05(a—-0)(|Ya+1]—|Ya—1}) (33)

For the 6-dimensional CCC system with fixed
paramncters (o = 10, § = 14.87, a = —1.27,
b = —0.68 k = 0.02), we have obtained
Lyapunov exponential spectra (0.4335, 0.4125,
$.0009, 0.00000, -3.7522, -3.8741), in which
there arc three positive ones. It was also
shown in Ref.[1] the robustness of the hyper-
chaos in the CCC way in which it may be pos-
sible to obtain hyperchaotic attractors with NV
positive Lyapunov exponents in a chain of N
unidirectionally-coupled Chua’s circuits. But
tliecy have not shown synchronization of hyper-
cliaos yet. Could we realize it? That is our
subject 1 this work.

The second system with ten dimensions
called the RLVPD system is formed by cou-
pling well-known Rossler hyperchaotic sys-
tem, Lorenz system and Van der Pol-Dufling
oscillator.l'®] The differential equations for the
RLVPD system are given by

X, = —v(X? - aX; — X) (34)
Xo=X1— X2~ Xs+Ci1 X7 (39)
X3 = BX, (36)

X44 ——O'l(X‘;—Xs) (37)
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X5 = pX4 - X5 —X4XG + CzX7 +C3X8 (38)

X6 = XsX5 — bXe (39)
X7;=—Xg— Xo+ CsX4 +CsXy (40)
Xs = X7+ 0.25Xs + Xqp 41)

Xo =3+ X7Xo (42)
X10=—0.5X9+ 0.05X10 (43)

The response system for the RLVPD model is
defined in the same way as in the CCC case.
X1, X4, X7 and Xg are used for couplings of the
RLVPD system. The couplings are chosen such
that for a range of random initial conditions
the coupled systems remain bounded, possess
two or more positive Lyapunov exponents, and
exhibit global chaotic behavior. The couplings
shown above are found satisfactory for the pur-
pose of our study. The parameter values used
for the RLVPD system are given by v = 300,
a = 0.35, § = 45, p = 28, b=8/3, o1 = 10.
The initial conditions are as follows: using ran-
dom numbers for X;, X5 and X3, and the others
are zero for the driver system but using ran-
dom numbers for Y3, Y3 = 1 and the others
are zero in the response sysfem. The RLVPD
has two or more positive Lyapunov exponents
for a large set of values of the coupling pa-
rameters C;,2 = 1,2,3,4,5. For examples, for
Ci=1,C, =1,C3 =37 and C4 = C5 = 0, the
Lyapunov exponential spectra for the RLVPD
are three positive ones: (0.198, 0.333, 0.008), a
0.000, and six negative (-1.599 ,-2.999, -32.874,
-701.014, ... ). For C; = 1,C; = 1,C3 = 20
and C4y = Cs = 0, the RLVPD has two posi-
tive Lyapunov exponents (0.262, 0.031) and a
zero and seven negative ones. Qur numerical
results show that many sets of values of the Cj
can be used for the study of hyperchaos in the
RLVPD system. Note that the RLVPD is a
ten-dimensional hyperchaotic system which has
been never investigated yet.

4 Synchronization of hyperchaos

Based on the above model hyperchaotic
systeins, we are in a position to focus on the

main issue of synchronization of hyperchaos.
The variable feedback control method is ro-
bust in the sensec that a given dynamical sys-
tem can be synchronized with its replica by a
variety of choices of forins of the feedback func-
tion G(X,Y) and by a variety of choices of pa-
rameter values in each functional form. This
implies that temporal synchronization of hyper-
chaos becomes simpler when the method of vari-
able feedback functions is employed.

Now, let us see the results of hyperchaotic
synchronization in the CCC and RLVPD sys-
tems by various NFF, respectively. For illus-
trating synchronization of hyperchaos in the
model CCC and RLVPD by the NFF, we have
calculated all the Lyapunov cxponents of the
synchronized systems and the transition time.
All of Lyapunov exponents of the synchrouized
systems are found to be negative. Such as, for
the replica of the CCC system (18-23) synchro-
nized by the NFF G5 = —10tank(5(Y7 — X;)
and G5 = —10tanh(5(Ys — X)), the Lyapunov
exponents are (0.0000, -0.0004, -0.0007,-0.0018,
-0.2918, -50.7053).

For the synchronized replica of the RLVPD
(Eqgs.(34-43)) under the above two groups of
connection coeflicient (1) C; = 1,C, = 1,C3 =
37,C4 = Cs = 0 and (2) Cl = l,Cz = 1,C3 =
20, C4 = C5 = 0, and Kl = 12, Kg = 13,
Ky = 14, Ky = 15, Ky = 16, K¢z = 17,
K7 = 500, Kg = 880, Kg = 2000, K10 = 2001,
after nonlincar feedback by the NFF of No.3 in
Table 1, the Lyapunov exponents are (-13.85,-
13.94,-17.69, -17.97, -26.04, -499. 99, -877.91, -
1769.40, -2020.15, -2794.07) and (-13.49,-13.87,
-17.86, -18.23, -25.58, -497.45, -867.83, -915.88,
-2000.95,-2024.65), respectively.  These evi-
dences show that hyperchaotic synchronization
1s realized successfully and all of hyperchaos
for our models is synchronized very well by the
NFF.

For measuring efficiency of synchronizing
hyperchaos, we have also computed the average
transition time , 7, over 100 initial conditions
for each choice of the feedback function. The re-
sults are given in Tabs.1-2 for above two hyper-
chaotic models. It is seen from Table 1 that the
No.8 of NFF can realize syuchronization with
faster transition time than the linear fecedback
one. Another interesting trend is that the aver-
age transition time 7 in the casc of combinations
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of the NFF is always smaller than the average
T of the constituents of the combinations. For
example, No.8 of the NFF in Tab.2 is of fastest
transition time than the other NFF above since
it has more superposition of the NFF and linear
one. The more superposition, the faster tran-

sition time. The nonlinear feedback functions
and their superposition (including with linear
one) can work much more efficiently for syn-
chronization of hyperchaos. The above results
may provide a way to expedite synchronization
in real experimental situation.

Table 1 Transition time 7 versus some feedback functions in the CCC system for the above parameters

in the text

No Feedback function T
G(X,Y) cce
1 G; = —-100(Y; — X;),»= 2,5 12
2 G; = —15tanh(5(Y; — X;)),1 =2, 4 9
3 GQ = —100(Y2 — XQ), G4 = —1005in(0.25(Y4 - X4)) 11
4 Gy = —50tanh(1.5(Y2 — X2)),G4 = —100sin(0.25(Yy — X4)) 11
5 G2 = —1005in(0.5(Y2 — XQ)), G5 = —100(1/5 — X5) 15
6 Gy = —5sin(15(Y2 — X32)),Gs = —5tanh(5(Yy — X4)) 11
7 Gy = —25tanh(1.5(Y2 — X2) — 0.05(3(Y2 — X2)2 — 1)), G5 = —5(Y; — X5) 11
8 G2 = —10tanh(5(Y1 - Xl)),G5 = —10tanh(5(Y5 - X5)) 1

Table 2 Comparison of average transition time 7 over 100 initial conditions for various forms of the
feedback functions in the RLVPD systems. The feedback parameters values are as follows: 4 = 100,
K =12, K; =13, K3 = 14, K4 = 15, Ks = 16, K¢ = 17, K7 = 500, K5 = 880, Ko = 2000, Ko = 2001.

No Feedback function T
G(X,Y) RLVPD
1 1 - eFilYi=Xi) 170.287
Ki(1 —e(YimXa)y 2.664
2 —tanhK;(Y; — Xi) 7.038
3 —AsinK;(Y; — X;) 165.50
4 —tanhK;(Y; — X;) — AsinK;(Y; — X;) 2.14
5 K;(Y; — X;) — AsinK;(Y; — X;) 2.008
6 K;(Y: — X;) — tanhK;(Y; — X;,) 1.405
7 Ki(Yi — X;) — tanhK;(Y; — X;) — AsinK; (Y; — X;) 1.175
8 Ki(Y; = X;) + Ki(1 - = X))
—tanhK;(Y; — X;) — AsinK(¥Y; — X;) 0.812

5 Discussion and conclusion

In this paper we have presented the nonlin-
ear feedback functional method to realize syn-
chronization of hyperchaotic systems in higher
dimensional dynamical systems. For the model
hyperchaotic systems, we have introduced the
six-dimensional and ten-dimensional system by
coupling (1) the coupled Chua’s curcuits (CCC
system) and (2) the coupled Réssler hyper-
chaotic attractor, Lorenz attractor and Van der
Pol-Duffing oscillator (RLVPD system). The
couplings gave us hyperchaotic systems possess-
ing two and three positive Lyapunov exponents.
The number of positive Lyapunov exponents
of a coupled system is not equal to the sum
of the number of positive Lyapunov exponents
of its components. We have studied synchro-
nization of cases involving two and three posi-

tive Lyapunov exponents. Qur main focus has
been to illustrate the flexibility and robustness
in the method of nonlinear feedback control by
considering several examples of nonlinear and
linear feedback functions and their superposi-
tions. Main numerical results for the cases that
we have studied are as follows. (1)For feed-
back both linear and nonlinear feedback func-
tions can synchronize hyperchaotic systems. All
of the NFF can reach the hyperchaotie syn-
chronization but some of the NFF which can
be found is luckier and better than linear one
because it has faster transition time and only
one or two NFF applied to one or two cqua-
tions of response system are enough for synchro-
nization. (2)The feedback functions obtained
by superposition of known lincar and nonlin-
ear feedback functions can also synchronize the
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same hyperchaotic system as well as they are
more efficent than their each component does.
One can explore larger classes of feedback furnc-
tions to synchronize hyperchaos. We anticipate
that a realization of the existence of such a
flexibility will help design appropriate feedback
controls in real experimental situations. From
the point of view of synchronization by vari-
able feedback control, we do not find any dif-
ference depending on the numbers of positive
Lyapunov exponents and of dimensions. We
have considered here the flexibility in synchro-
nization but the same flexibility also exists for
both control and synchronization of spatiotem-
poral chaos.1?~14 This method therefore has
the potential of practical applications. For ex-
ample, in secure communication suggested in
Refs.[7,11] hyperchaotic signals are transmitted
to mask a message and a synchronized receiver
system is set to recover the message. Thus it
may improve security and obtain a more efhi-
cient encoding of information.
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