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Abstract  The correlation-function potential-harmonic and generalized-Laguerre-function
expansion method (CFPHGLF) of directly solving the Schrodinger equation in few-body sys-
tems is presented and applied to the n'S (n = 1 — 4) states of the helium atom. It can be
found that the present eigenenergies for 2!S, 3!S and 4'S states are much better than those
from the potential-harmonic and generalized-Laguerre-function method (PHGLF') previously
published in Int J Quantum Chem, 1995, 55:47; and that they agree well with the exact
Hylleraas CI values. However, the eigenenergy for the ground state 1'S is not as good as
that from the PHGLF method because of omitting the potential harmonic (PH) basis relevent
to electron-electron correlation. The results are also simply discussed relative to some other

hyperspherical harmonic (HH) and PH methods.

Keywords
Helium atom

1 Introduction

The potential-harmonic (PH) method!!
in hyperspherical coordinates is an elegant tool
of reducing dramatically the number of the cou-
pled hyperradial differential equations (CHDE)
or dimension of the generalized eigenmatrices
so as to overcome huge degeneracy of hyper-
spherical harmonics (HH) and accelerate con-
vergence rate of eigenenergies after all. In 1991,
Fabre de la Ripellel? began to apply the PH
method to the two electron atomic systems,
such as H™ and He. Recently, we unified the
generalized Laguerre function method (GLF) of
directly solving CHDE and PH method into the
PHGLF (potential-harmonic and generalized
Laguerre function) method by including PH ba-
sis of 712 (electron-electron distance) as Fabre
did?, and applied it to the nlS (n = 1 — 4)
states for the four heliumlike systems, H™, He,
Lit and Be?*P. Like the results in Ref.[2], the
convergent eigenenergies approach those from
the complete basis set HH calculation with
only a very small discrepancies; however, they
are still far from the exact variational Hyller-
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aas CI values except the ground state eigenen-
ergy. The other problem is that inclusion of the
PH basis of the electron-electron correlation re-
sults in the two linked CHDE. This is equiva-
lent to increasing the number of CHDE by one
time. Thus. the size of the eigenmatrix in the
PHGLF calculation is not efficiently reduced,
especially for the excited states, the eigenen-
ergies of which converge very slowly with the
number of GLF. To solve the two problems
mentioned here, in this article, by absorbing
the idea of the correlation function extensively
used to accelerate the convergence of HH ex-
pansion, we first modified the PHGLF into a
correlation-function PHGLF method hereafter
referred to as CFPHGLF method, and then
carried out practical calculation on the n!'S
(n = 1 — 4) states of the helium atom. In
addition, we simply discussed the present CF-
PHGLF results relative to those from some
other HH and PH methods.

2 CFPHGLF expansion theory

First, wave function of the heliumlike sys-
tem is decomposed as

Y(ry,7r2,0) = exp[—Z(r1 + 72)]®(r1,72,0) (1)
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where exp[—Z(r; +12)] is the so called correlation function simulating the electron-nucleus cusps
completely. Substituting Eq.(1) into the ordinary nonrelativistic Schrodinger equation of the
heliumlike systems and introducing the nonregular hyperspherical coordinates!*l, one has (in
atomic units)

2 A2
[——%(aa—rg +32 - A%292) + Z(cosny + sinmy) &

. o)
+£ (cosma — sinm) g + iy = (B + Z2)]8(r, 2,0) = 0

where Q = (72, 0;, :), r is the hyperradius (r =72 + 73, 0 <r < 00) and 72 (0 < 72 < 7/2) the
hyperspherical angle, A2(Q) the grand angular momentum operator, the eigenfunctions of which
are the six-dimensional hyperspherical harmonics (HH). For the S states (L = ML = 0), we let
the total wave function

®(r,Q,0) = [®(r1,7) + B(r2,7)]|O(01,02) (3)

where O is the antisymmetric spin wavefunction, ®(r,7) and ®(rs,r) are expanded in the indi-
vidual PH basis P9, (£2,0) and P2, (2, 7/2) defined by Fabre de la Ripelle!!! for functions of 7
and r3, respectively,

®(ry,7) = S Fe(r) P2 (2,0) (4a)

®(r2,7) = Ty Fy(r) Pe(Q2,7/2) (4b)
Since P9, (£2,0) and P, (,/2) differ trivially by only a phase factor (—1)*, we obtain

®(r,Q,0) = S Fr.(r) Py (Q,0)0(01,02), (k = even) (5)

Substituting the expansion into Eq.(2), and considering the orthonormal relationship of the
PH basis and spin functions ©(a;,03), we get the coupled hyperradial differential equations

3 4o g - B (54 2R

4 (6)
+ g [ZAkk’a; + ;Dkkl]Fkl (1") =0

where

A =< PL(2,0) | (cosns +sinn) | PL(2,0) > (Ta)

. 0
Dier =< P§,(9,0) | Z(cosmz — sinna) 5~ + —— | PR(®,0) > (7b)
72 T12

Eq.(6) has the similar form to that from the correlation-function hyperspherical-harmonic
and generalized Laguerre function (CFHHGLF) methodl®!. Consequently, it can also be directly
solved by the GLF method of hyperradial wave function, which has been described elsewherel4—6],

To perform numerical calculation, we give the analytical expressions of the matrix elements
A and Dyy below derived through making use of coupled relationship and definition of the
PH basisll.

A, = =645, (k" +1)
kk T k!'=even (2k" — 1)(2’6" ¥ 1)(2’6” F 3)(2]{7" ¥ 5) (8)
(K" =| k=K |,| k— K | +2,---,k + k')
8v2 (—1)*"/2

2 b))
Rk +1)(2k" + 3)

,
< Pp.(2,0) | - | P3(£2,0) >= (9)



No.2

Wang Yi-Xuan et al.: Fast convergent study on potential-harmonic method

97

with " =|k—k'|, | k—k | +2,---,k+ k; k, k' having the same parity.

< P2, (9,0) | (cosma — sinnz)bﬁ— | P.(,0) >

B (k + 2)!I(k' + 1)!
V2T (k +3/2)T(K + 3/2)

where

C(1;k—1,3/2,3/2;k',1/2,1/2)

T2

(10)

C(t;n,a,bym,r,8) = fil dz(1 — 2)'(1 + z)P P2 (z) P7:*(xz)

_ 2" T(a—t+n)L(b+n+ DI(r+m+ HI(t+1)

m

(11)

mInl(r + 1)@ — )T (b+t+n+2)
xaFs(—m,r+s+m+1,t+1,t—a+ L7+ 1,b+t+n+2,t—a—n+1;1)

Hence, Dy can be simply calculated from Egs.(9,10). The analytical expressions of related
matrix elements Agg, Dgy in the CFPHGLF scheme are much simpler than in the CFHHGLF

one.

3 Results and discussions

The CFPHGLF method was applied to
the n'S (n = 1 — 4) states of the helium atom.

All the calculations are performed on the IRIS
SGI workstation with programs written by us.

The results are summarized in Table 1 together
with those from the PHGLFP!, CFHHGLF!

Table 1 Eigenenergies (—E/u) of the n'S (n = 1 — 4) states for helium atom calculated from the
CFPHGLF method®

NPH 4 6 8 10 4 6 8 10
NGLF NHH 16 36 64 100 16 36 64 100
A2 12 20 28 36 12 20 28 36
115 218

24 2.879418 2.879096 2.879046 2.879034 2.144328 2.144373 2.144271 2.144166

32 2.879418 2.879096 2.879047 2.879034 2.144326 2.144359 2.144257 2.144147

40 2.879418 2.879096 2.879046 2.879034 2.144325 2.144358 2.144257 2.144146

50 2.879418 2.879096 2.879046 2.879034 2.144327 2.144358 2.144257 2.144147

60 2.879417 2.879096 2.879046 2.879045 2.144325 2.144358 2.144255 2.144146

PHGLF? — — —  2.900935 — — —  2.081632
CFHHGLF* — 2903737 — — —  2.146033 — —

HCIl™ — — —  2.903724 — — —  2.145974

3's 418

24 2.042746 2.059051 2.059324 2.059126 1.971942 2.026706 2.028604 2.028339

32 2.043136 2.060249 2.060667 2.060473 1.966948 2.026025 2.032836 2.032766

40 2.043148 2.060330 2.060785 2.060593 1.966710 2.025235 2.032055 2.033312

50 2.043138 2.060331 2.060795 2.060602 1.966713 2.025151 2.032886 2.033249

60 2.043142 2.060333 2.060798 2.060644 1.966713 2.025147 2.032859 2.033215

PHGLF? — — —  1.827216 — — —  1.533855
CFHHGLF* —  2.060659 «— — —  2.026797 — —

HCIl — — —  2.061271 — — —  2.033586

Notes: a. NPH, NHH and NGLF represent the number of potential harmonics, the number of all hyperspherical

harmonics at the given grand angular momentum Az, the number of the generalized Laguerre functions, respec-

tively. A2 = 2k. b. From Ref.[4], NGLF=7, &(r,Q,0) =
NGLF=32, the correlation function is exp[—Z(ry + r2)].

and the Hylleraas variational CI (HCI)["] val-
ues. Table 1 shows that the ground state
eigenenergy deviates markedly from the HCI
result (-2.87903 vs -2.90372u), while the
eigenenergies for the three excited states 2'S,

[®(r1,7) + ®(r2,7 + ®(r12,7)]©(01, 02), c. From Ref.[6],

3'S and 4'S near the HCI ones, the errors
of which are only 0.001828, 0.000627 and
0.000371u, respectively. Table 1 also shows
that the present eigenenergies for the excited
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sates n'S (n = 2 — 4) are much better than
those from the PHGLF, while the eigenenergy
for the ground state is not as good as that
from the PHGLF. This clearly indicates that,
in the PH expansion scheme, only electron-
nucleus correlation is not enough, and the
electron-electron (e-e) correlation seems to be
absolutely essential to get accurate ground
state eigenenergy. In the case of the excited
states, the electron-nucleus cusps play more
important role than the e-e correlation and
the cluster structure in accelerating conver-
gence of eigenenergies. According to Table 1,
the eigenenergy of the ground state also devi-
ates appreciably from that by the CFHHGLF
method of complete set expansion in the angu-
lar part -with the same correlation function as
the CFPHGLF method, but those two methods
yield almost the same results for the excited
states 2'S, 3!S and 4'S, at the given Az, which
have discrepancies only in the fourth decimal
place for 28, fifth decimal place for 3'S and
4'S. This implies that the accuracy loss caused
by the PH approximation for the ground state
1!S is much higher than those for the excited
states. To some extent, it may be responsible
for the fact that the contribution from the hy-
perspherical harmonic basis except the PH are
much smaller to these excited states than to
the ground state. As far as the energy preci-
sion is only concerned, the CFPHGLF method
is not as good as the CFHHGLF method, as
if the general PH method is inferior to the
HH method because of omitting the HH ba-
sis that do not appear in the expansion of
the interparticle potential. However the size
of generalized eigenmatrices is dramatically re-

duced from (NHHxNGLF)? in CFHHGLF to
(NPHXxNGLF)? in the CFPHGLF method.

In sum, the CFPHGLF method modi-
fied from PHGLF through introducing radial
correlation function generates very accurate
eigenenergies for excited states n'S (n = 2 —
4) of the helium atom, which only have er-
rors in the fourth decimal place for 28, fifth
decimal place for 3!'S and 4!S states com-
pared with the exact variational values and
the complete set expansion CFHHGLF re-
sults. The ground state eigenenergy is not so
good. The present results implies that electron-
nucleus cusp plays more important role than
the electron-electron cusp and the cluster struc-
ture for the loosely bound excited states, and
that electron-electron cusp is absolutely essen-
tial for the tightly bound ground state. More-
over the results tell us that the contribution
from the hyperspherical harmonic basis except
the PH are much smaller to these excited states
than to the ground state.
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