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Abstract

From the shell model configurations, valence nucleon effective interactions and

fermion E2 transition operator, the sdgIBM-1 Hamiltonian and boson E2 transition operator
are derived micoscopically with the help of Dyson boson expansion technique. Spectra and
reduced E2 matrix elements are calculated for the '°2:120:188(Q5 isotopes. Present theoritical

results fit experimental data quite well.
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1 Introduction

Properties exhibited by the y-soft Os nu-
clei have attracted the attention of theoreticians
and experimentalists for many years!~3]. De-
scription of these transition nuclei has been one
of the most challenging tasks for collective mod-
els of nuclei. Among many models which have
been applied to describe these nuclei, the phe-
nomenological interacting boson model (IBM)
seems rather satisfactory. In the earlier IBM
work, the Os isotopes near 1%°0s were analyzed
by Casten et all%l as an illustration of O(6)
to SU(3) transition. The calculations could
produce reasonable agreement with the exper-
imental data. However, there are still more
works[®6, which suggest to include the hex-
adecapole degrees of freedom. In fact, an ex-
tension of the sdIBM to include g bosons has
proved to be quite successful indeed in view
of Lac and Kuyucak’s results(’), The success-
ful phenomenological description of these tran-
sition nuclei invokes us to study its underlying.
In the present paper, we extend one of the mi-
croscopic approaches of sdIBMI8 to the sdgIBM
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and apply it to the 192:190,188()g jsotopes.
2 Theory

2.1 Fermion description

As the background of present work, the mi-
croscopic approach can be found in Ref.(8). The
outline is introduced briefly with emphasis fo-
cused on the extension.

Assume that there are z valence neutrons
and z' valence protons in a nucleus moving re-
spectively in k and k' single-particle orbitals,
the shell model configurations, then are

)T (1)
where i stands for three rotationally invariant

quantum numbers nlj of a single-particle state.
Let a(_n)+’ alW g
m

im» Gim  and af&) denote re-
spectively the creation and annihilation oper-
ators of valence neutrons and protons, m the
projection of the angular momentum, and let
|0) be a closed shell state with £ = =’ = 0, then
an arbitrary state vector in the state space of

valence nucleons can be expressed as

(ilviZ’ e 1ik)x; (1‘,1’1‘12’ T

(2)

where c is combination constant, and «,8 staud for single-particle state (im).
Consider a valence nucleon Hamiltonian which takes a general form

Hf — H‘(n) + H‘(p) + _FI}np)

3)
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where PC(;,Z/ s and Pi’;,‘;)é represent matrix elements of the interactions.
For a many fermion system the E2 transition operator is defined as the following
TZ{V = Z eg’) Z (ilmllrng,,]igmg)ag-?,)nt a;:,),” (6)

o=n,p iimyiamy
2.2 Boson description

The fermion description of the system is
transformed into an ideal boson description by
means of the Dyson mapping. The transforma-
tion operator!®] takes the form

%2 A:ﬁa‘,au
U={(0e > 0) (M)

then the boson image state |¢) of a fermion
state |4) is determined by the operator U,

[¥) = Ul) (8)
and the counterpart Op in the boson space of

an arbitrary fermion operator Qs can be deter-
mined by the following relation,

UO¢ = OpU (9)

Excitation modes describing the low-lying
collective states must be low-energetic, there-

s = Qg):)om

Once the s, d and g bosons have been de-
termined, one can arrive at the most general
Hamiltonian with all possible one-body terms

d?) = Q")

after we define the creation operator of Q-
bosons in a linear combination of the ideal bo-
son creation operators

ol A
asp

Q(0)+ —

reJM (10)

where 7 stands for the ordering of energy of
Q-boson, 7 and .J represent parity and an-
gular momentum respectively, z&r;JM) is the
structure constant. According to the dynamic
properties(®l, zg”]M) and the energies of Q-
bosons can be determined. The lowest-energy
Q-boson of different angular momentums would
be suitable for describing the low-lying collec-
tive states, so this kind of Q-bosons are taken

as phenomenological bosons

o = Q%) (11)

04243

and two-body interactions, and boson E2 tran-
sition operator as well in the sdgIBM-2,

Pag + hoag + hiay

(12)

hsdg =

To= 3 D[a§)(s0*d@) 4 dO ), 4 2l (@),

o=n,p

+ zgz)(d(")'*g'(”) + g(ﬂ)+,}(0))2V F 1"(171) (g(°)+§("))zy]

= ¥ 2y

o=n,p

(13)

where the coefficients {z{?)} can be obtained after the Dyson boson expansion, Q(z‘,’,) i1s boson

quadrupole operator,

QF) = (s+d@) 4 dD+5)),, 1 D@D+,

+ x5 (@G 4 gl @)y, 3 (D g+ (),

Comparing Eq.(13) with Eq.(14), we get

2O = 5l

(14)

(15)


http://www.cqvip.com

No.2 Zhang Zhan-Jun et al.: The microscopic approach of sdgIBM-1 and study of Os isotopes 71

(@ _ 2% o)
1 z(()g) . 2
B(o) . .
where ¢, (7 = n.p) is boson effective charge.

The dimensionality of sdgIBM-2 space is
much bigger than that of sdgIBM-1 space. In
order to make the problem casier, it is couve-
nient to take advantage of the full-symmetry
approximation denoted by the maximuni F-
spin quantum number, Fpax = 3(Ny + Np).
where N,. N, are neutrou, proton boson uum-

B Nn
€y 5

B(n)

(o) _ 7
@ X3 T oy (16)
Zo2 Zo2

ber respectively. After the full-symmtry ap-
proximation, one can obtain the most general
Harmiltonian!0-11)
the sdgIBM-1,

and E2 transition operator in

Coecflicieuts iu the quadrupole operator 0y, are determined, i.c.

_ Nneg(n)xgn)wLNpe?(p)pr)

Xi =

Up to now, the sdgIBM-1 Hamiltonian and
boson E2 transition operator have already been
obtained rmicroscopically. Therefore, we can
study the E2 or other propertics in the frame-
work of sdgIBM-1.

3 Application of the extended ap-
proach and discussions

Now we apply the microscopic approach to
the Os isotopes. For 192:190.18(Qg there are 6
proton-holes in the 50 ~ 82 major shell and
10 ~ 14 neutron-holes in the 82 ~ 126 major
shell. As iuputs of the extended approach, the
single particle energies we adopted!!? are as fol-
lowings: (in MeV)

Est,,, = 0.00, Esp,,, = 0.30, Eun,,, = 2.20,
Eay,,, = 3.50, Ey,,,, = 3.60, Es,,,, = 4.60;
Ey,,, = 0.00, Ey,,, = 0.32, Ey,,,, = 2.32,

E2d_.,/2 = 2.84, E3,1/2 = 3.21.

The valence nucleon effective interactious, also
inputs of the approach, arc taken as the fol-
lowing type. The interactions between alike
nucleons consist of pairing force, quadrupole
pairing force and quadrupole-quadrupole force,
the neutron-proton interaction is of quadrupole-
quadrupole type. The interaction strength pa-
rameters are labeled as gg’), G'(;), k() (o0 =
n,p) and kyp accordingly. Their values are
listed in Table 1. The fermion effective charges

Nne?(n) + Npe?(p)

iLsdg = hsd + hg + h(Sd; g) (17)
Ty, =} Qu (18)
where (;, takes the same form as Q(z?,
Ny B(p)
AT (19)
) 1= 1, 2, 3 (20)

for 192,190,188 ()5 isotopes are listed in Table 2.

Table 1 The parameters of valence nucleon
effective interaction. (keV)

Nucleus g&n) ng) k() ggp) G(zp) &(P) Kap
T920s 40.0 45.0 12.0 47.0 61.0 230 5.0
1900s 40.0 43.0 12.0 47.0 63.0 23.0 5.0
18305 40.0 43.0 12.0 47.0 66.0 23.0 6.0

Table 2 Necutron (proton) effective charge e}

(e;")) and the coefficents of boson E2 transition

192 0,188
operator for '°%1%0:182 Oy

Nucleus t(i) e(zp) eg X1 X2 X3
1970s 3.20e 3.60e 0.149¢b 0.434¢ 1.177 1.030
1900s  3.00e 3.20e 0.138¢b 0.443 1.182 1.036
18305 2.70e 3.00e 0.126eb 0.447 1.183 1.034

In the framework of the extended approach
mentioned above, the sdgIBM-1 Hamiltonian
and boson E2 transition operator have been ob-
tained. 32 coefficients in total in the Hamilto-
nian and 4 coefficients including boson effective
charge in the E2 transition operator are cal-
culated simultaneously. The coeflicients of E2
transition operator are listed in Table 2. Boson
effective charges determined microscopically are
close to those adopted phenomenologically in
Ref.[7].

The spectra in the microscopic calcula-
tions for 192:190:188(g exhibit almost the same
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level structures, as an example shown in Fig.1.
The energies of low-lying states in the ground
band are reproduced quite well, while in the

sidebands, the fitting is not as good as that-

in the ground band. But generally speaking.
the fitting between the present calculation and
the experiment is satisfactory. In the micro-
scopic sdIBM-1 approach all the theoretical en-
ergy levels are much higher than experimental
ones, especially in the sidebands. After the ex-
tension to include g bosons the improvement
has been achieved. For all the energy levels in
the Fig.1, the mean deviation in the sdgIBM-1
(=~ 0.198MeV) is almost half of that (& 0.336
MeV) in thc sdIBM-1. The present theoreti-
cal spectrum has also shown major characters
near O(6) limit in sdIBM-1, such as stagger-
ing in the quasi-y band and quadruplet G'f, 4;.
3} and 0F. So one can think although the ef-
fects of g bosons are really important to some
specific properties, the main components in the

wavefunctions are still those near O(6) limit in

sdIBM-1.
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Fig.1 Spectra obtained from microscopic
calculation and experimental data for *°°Os

Table 3 Absolute values of reduced E2 matrix elements of '*2Os (in eb). The experimental data are
taken from Ref.[13]

I —Jf Exp Cal JF = J7 Exp Cal
2F —of 1.457 £ 0.018 1.404 67 — 67 1.49(7730) 1.702
4t — 2} 2.115(15938 2.309 67 — 4 2.09(*519) 2.581
67 — 4} 2.93(%p00) 2.995 67 —4f 0.067 £ 0.076 0.164
8t —6F 3.58(*0 1% 3.508 4 -4 1.19 £ 0.22 1.585
2} -2} 1.224(100% 1.575 4} — 3} 1.63(1929) 1.707
0.008 0.12
2{ - oi 0'425(}3'{’%‘ 0.040 4{ - 2% 0'79(;8'6?52 0.009
2} — 4] 0.35(1022) 0.171 4t — 2] 0.113(}9:0%6) 0.080
0 — 27 0.066(*001% 0.472 2} -2t 1.2140.18 0.729
of — 2% 0.449(}(‘();;‘{’,5; 0.418 41 - 41 0.73(;§'§§ 0.980
4f — 4! 1.35(1909) 1.603 6] — 6] 116(1g34) 1.223
4 —2F 1.637 £+ 0.050 1.806 8F — 8} 1.31(1042) 1.430
af —2f 0.125(10 0% 0.084 10} — 10} (-2.3-0.4) 1.626
4 —6f 0.40(192%) 0.231 2 — 2} 0.98 + 0.10 0.480

Table 4 Absolute values of reduced E2 matrix elements of '°Os (in eb). The experimental data are
taken from Refs.[14,15]

FAJEN J;‘ Exp Cal Jr = J7 Exp Cal

2; - oi 1.539 + 0.013 1.483 6%’_ - 6; 1.766 + 0.184 1.785
4# - 2# 2.366 + 0.042 2.433 6Zr - 4Zr 2.598 + 0.156 2.723
6# — 4] 2.970 + 0.515 3.152 6Zr - 4# 0.194 £ 0.090 0.210
s# - 6'!: 3.712 £ 0.105 3.714 41 - 4Zr 1.587 +0.113 1.640
2} — 2] 1.095 + 0.030 1.577 47 — 37 1.543(199%) 1.770
2{ - 01 0.456 £ 0.012 0.077 4 - 2{ 0.775 £ 0.065 0.062
0Zr - 2Zr 0.387 + 0.032 0.533 41 -2 0.052 + 0.006 0.107
0Zr - 2}+ 0.118 + 0.011 0.514 47 — 4} 7~ 0.199 0.135
4ZL — 4] 1.439 + 0.031 1.636 21 - 21 1.253 + 0.396 0.975
4Zr - 22 1.871 £ 0.040 1.894 2} — 2] 1.187 + 0.528 0.665
4t o2 0.202 £ 0.007 0.112

2 1



http://www.cqvip.com

No.2 Zhang Zhan-Jun et al.: The microscopic approach of sdgIBM-1 and study of Os isotopes 73

In the theoretical spectrum, 6?’, 4; and
37} looks as a group while 4t and 273 as another
one, and 0F lies between those two groups. This
phenomenocn indicates the admixture of some
components of U(5) limit in 0] state. One can
confirm this point of view through the analy-
sis of (03||T(E2)||2]). The Os isotopes ncar
1900)s were analyzed by Casten et al¥ as an
illustration of O(6) to SU(3) transition in the
sdIBM. (03 ||T(E2)||2]) in either the O(6) limit
or the SU(3) limit should be zero while in U(5)
limit not. The calculated reduced E2 matrix

elements are listed in Tables 3 ~ 5 compared
with the experimental data. From Tables 3 ~ 5
one can find the experimental (07 ||T(E?)|(2])s
are really very small. However, the calculated
(0F|IT(E2)(|27 )s are nearly 5 ~ 7 times of those
experimental ones, it reflects the affection of
components of U(5) limit. However, such affec-
tion also exists in the microscopic sdIBM-1 and
is not decreased due to the extension. Maybe
some other degrees of freedom arc needed in de-
scribing 03 such as the influence of d’ bosons.

Table 5 Absolute values of reduced E2 matrix elements of *®Os (in eb). The experimental data are
taken from Refs.[15,16]

JF = Jf+ Exp Cal JF - J;‘ Exp Cal
2f —of 1.584 + 0.022 1.653 aF o7 0.283 + 0.018 0.182
4t 2'1+ 2.646 + 0.057 2.627 6t — e'l* 1.442 + 0.406 1.759
62: - 4? 3.314 + 0.109 3.330 6% - 4!{ 2.456 + 0.274 2.769
8f — 6} 3.950 + 0.329 3.896 6] — 4 0.127 + 0.025 0.315
2t o 2lL 0.866 + 0.023 1.440 47 - 4'1* 1.643 + 0.246 1.681
21 - o!* 0.483 + 0.010 0.145 43 - 23r 0.837 + 0.149 0.183
0ZL - 2# 0.077 £ 0.029 0.513 2 — 2?* 1.517 + 0.330 1.476
43 L gt 1.098 + 0.090 1.560 2 —2f 1.319 + 0.330 1.081
43 - 2;" 1.775 + 0.113 1.944

The experimental results show that the in-
band transition is strong while the interband
transition weak. The calculated results, given
in Tables 3 ~ 5, show that such features of
transition properties for 192:190:188 (g are well
reproduced by the present microscopic calcula-
tions with a few exceptions. Nevertheless we
notice that tle present results are much similar
to those of phenomenological sdgIBM-1 study
by Lac et all?l. It means that the resulting
wavefunctions describe the excited states well.

In summary, the achievement in calcula-
tion of spectra and the reduced E2 matrix ele-
ments in the Os isotopes indicates the success of
the microscopic approach. The present exten-
sion has improved the fitting of spectra and the
reduced E2 matrix elements between the calcu-
lation and the experimental data. At last, it is
worth to point out that the extension has pro-
vide a reasonable underlying of the phenomeno-
logical sdgIlBM-1.
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