Measurement of ⁷⁹Se by accelerator mass spectrometry using projectile X-ray technique

HE Ming, JIANG Shan, JIANG Song-Sheng, WU Shao-Yong,
Zhao Zhan-Xia, Dong Yue-An
(China Institute of Atomic Energy, Beijing 102413)

Abstract In order to carry out the measurement of heavy nuclei in accelerator mass spectrometry, characteristic X-rays of the incident projectile have been explored and used as a method for isobar discrimination. The projectile X-ray combined with AMS technique has been set up in China Institute of Atomic Energy. The measurement of 79 Se was performed by resorting to the projectile X-ray AMS technique and the detection sensitivity of 79 Se was improved more than 2 orders of magnitude. The detection limit was about 3.6×10^{-9} for 79 Se/Se.

Keywords Tracer ⁷⁹Se, AMS, Projectile X-ray CLC numbers TL817⁺.4, TL817⁺.6, TL817⁺.1

1 Introduction

In accelerator mass spectrometry (AMS) measurements of long-lived radioisotopes, stable isobars are the dominant background. For the radioisotopes of atomic number Z < 20, the isobars background can be eliminated by means of the different energy loss of isobar in matter due to the rate of energy loss is a function of Z. But with increasing atomic number, the energy straggling increases relative to the energy loss difference, so that isobar separation becomes progressively less effective. In order to separate the isobars with higher atomic numbers the ion energy has to be raised to higher values. However, for the energies accessible with larger tandem accelerator, the highest atomic number that can be separated is about $Z \approx 25 \sim 30$. The projectile X-ray is a new isobar rejection method, which does not rely on the energy loss, and the isobar discrimination capability is nearly independent of ion energy. The projectile ion are identified by the characteristic X-rays that emit when slowing down in target^[1]. AMS combined with the projectile characteristic X-ray, which was referred as PX-AMS, can improve heavy nucleus detection sensitivity. So, some long-lived radionuclides (59Ni, 79Se, 93Zr, 93Mo, ⁹⁹Tc, ¹⁰⁷Pd) which were not able to be detected with required sensitivity before can be measured now with the method in principle^[2]. ⁷⁹Se, as a tracer, is interesting in the study of selenium biochemistry and metabolism, and as a component of long-lived fission product for nuclear waste repository^[3]. Especially in China it is more interesting to study the endemic disease (Kashan and kaschin-beck diseases) which related to Se.

Supported by the Nation Natural Science Foundation of China and by China Nuclear Industry Corporation

The values of published half-live of ⁷⁹Se are more than 2 orders of magnitude apart. ^[4] In order to carry out the measurement of ⁷⁹Se, the PX-AMS technique was used. For the first time the ⁷⁹Se was measured at CIAE with PX-AMS and the half-life of ⁷⁹Se has been obtained.

2 Elimination of the interference in the ⁷⁹Se measurement

The measurement of 79 Se was carried out by means of PX-AMS technique at China Institute of Atomic Energy. The schematic diagram of the PX-AMS system is shown in Fig.1. The measurement was performed in Charge State 9^+ at accelerator's terminal voltage of $8.05\,\mathrm{MV}$. In the AMS measurement the interference come from their isotopes and isobars of interesting nuclei. The isotopic interference was eliminated by deflector and the isobaric interference was eliminate by its characteristic K_α ray.

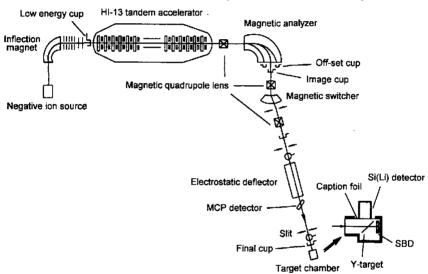


Fig.1 Schemiatic diagram of the PX-AMS system at the China Institute of Atomic Energy

2.1 Elimination of isotopic interference

The characteristic X-ray energy depends on atomic number, the isotopes 78 Se and 80 Se with the same K_{α} energy as 79 Se. So, in order to eliminate isobar interference by using the projectile X-rays, these isotopes interference must be eliminated first. The chemical form of CdSe was used as sample material for increasing Se⁻ current and reducing the isotopes interference. 78 Se and 80 Se are the main interference in the measurement of 79 Se. 78 Se and 80 Se, which have the same magnetic rigidity as 79 Se after magnetic analyzer, have energy higher and lower 1.013% than that of 79 Se, respectively. The electrostatic deflector was used to eliminate the isotopic interference. When the ions pass through the deflector, the 80 Se (78 Se) beam spots is about 12 mm lower (higher) than the 79 Se at a slit (4 mm in vertical direction and 7 mm in horizontal direction). In order to separate

the isotopic interference, the beam size is focus into less than 4 mm in the vertical direction at the slit. Fig.2 shows the isotopic interference are eliminated by adjusting the deflector voltage. The corresponding isotopic background is about $^{79}\text{Se/Se} \approx 10^{-10}$ after the deflector.

2.2 Target

When bombarding a target with ions, one observes characteristic X-rays from the ions and target elements. The yields of the projectile X-rays have strong correlation with targets and ions energy. When there is a match between the K shell level of projectile and that of target, there is a strong resonance in the K shell vacancy production for the incident ions, Kubo et al studied the situation and explained it by resorting to the molecular orbitals^[5]. When ion bombards a solid targets, a good

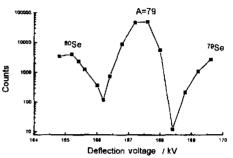


Fig.2 Isotopic interference in the measurement of ⁷⁹Se

target is an element with an atomic number that is slight higher than that of the interesting projectile. This is because there is a match of the inner shell binding energy between the projectile and the target (multiple collisions lead to outer-shell excitation which cause the projectile inner shell binding energy increase^[6]). In this way, the X-ray yield from the projectile is at its maximum and the count rate from the target is quite low. In the measurement of ⁷⁹Se, the Y target was selected because Se K_{α} ray yield is at its maximum.

2.3 Elimination of isobaric interference

After the ions pass through the slit, the isotopic interference is considered to be negligible. Only the ⁷⁹Se and its isobar ⁷⁹Br collide with Y target. Their characteristic K_{α} rays are emitted and measured by a Si(Li) detector. The difference of Se K_{α} ray

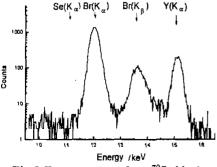


Fig.3 X-ray spectrum for a ⁷⁹Se blank sample

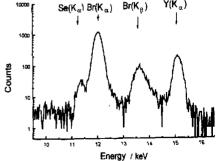


Fig.4 Measured X-ray spectrum for a ⁷⁹Se sample

(11.222 keV) and Br K_{α} ray (11.924 keV) is big enough to be separated by the Si(Li) detector (energy resolution (FWHM)=174 eV for 5.9 keV X-ray). Fig.3 is the X-ray spectrum of a ⁷⁹Se blank sample, Fig.4 is the X-ray spectrum of a ⁷⁹Se sample. The Y peak originated from the excitation of the target foil. The X-rays energy is higher compared to the X-rays of a single ionized atom^[7] Fig.3 shows that a fraction of Br K_{α} counts extend through the Se region as a low energy tail. The suppression factor (ratio of Br counts in the Br region to Br counts in the Se region) in $\pm 1\sigma$ is about 250 and the background corresponding to ⁷⁹Se/Se ratio of 3.6×10^{-9} . The sensitivity of the ⁷⁹Se measurement was improved more than 2 orders of magnitude when the projectile X-ray method combined with AMS technique.

3 Determination of ⁷⁹Se atoms in samples

In order to get the ⁷⁹Se atomic number from the counts of ⁷⁹Se K_{α} peak, it is necessary to determine the ⁷⁹Se K_{α} detection efficiency. The efficiency is related to the solid angle, the intrinsic detection efficiency for ⁷⁹Se K_{α} ray, ion energy and target thickness. For getting the ⁷⁹Se atoms in sample, it is necessary to measure the ⁷⁹Se/Se ratio of the sample.

3.1 Detection efficiency for 79 Se K_{α} rays

 79 Se K_{α} ray detection efficiency can not be measured directly due to isobaric interference. Isotopes 78 Se and 80 Se were used. As mentioned above, a deflector can eliminate the isotopic interference. On the other hand, the deflector can choice 78 Se and 80 Se by adjusting the deflector voltage. When 80 Se (78 Se) bombards a Y target, the K_{α} counts of 80 Se (78 Se) are measured with a Si(Li) detector at 90° with respect to the incident beam (for avoiding Doppler broadening and bremsstrahlung background caused by the deflector). The counts of 80 Se (78 Se) are measured by the surface barrier detector directly after the Y target is removed. Then we obtained the 80 Se(78 Se) detection efficiency. The detection efficiency of 79 Se can be calculated from the detection efficiency of 78 Se and 80 Se by an interpolation. In this experiment, the ion energy is 80.5 MeV, the thickness of Y target is $3.8\,\mathrm{mg/cm^2}$, the distance between the target and the Be window of Si(Li) detector is about 5 mm. The overall detection efficiency for the system was measured to be $(7\pm0.4)\times10^{-4}$ for K_{α} counts per incident 79 Se. The uncertainty is from the statistics error and reproducibility in the measurement of Se K_{α} peak counts and Se counts.

3.2 Measurement of ⁷⁹Se/Se ratio

For the measurement of 79 Se/Se ratio, the 80 Se current was measured with a final Faraday cup (behind the slit and in front of the Y target), the 79 Se was detected by K_{α} ray, and the atoms number of 79 Se was calcualted from 79 Se K_{α} counts and 79 Se K_{α} detection efficiency. The ion transfer efficiency from the final Faraday cup to the surface barrier detector (ϕ 12 mm) was consider to be 100% within 10% uncertainty. From 80 Se current and the 79 Se counts we obtained the 79 Se/Se ratio. The ratios of 79 Se/Se in the samples were deduced after a correction for stripping probability of these isotopes and 80 Se isotopic abundance. The 79 Se atomic number of samples was calculated from

the ratio of 79 Se/Se by using the relation: $N_{79} = M r N_0/A$, where M is the weight of CdSe sample, r is the ratio of 79 Se/Se, A is the CdSe mole weight, N_0 is the Avogadro's number.

4 Preliminary measurement of 79Se half-life

The half-life of ⁷⁹Se has been measurement with AMS technique^[4]. In this experiment, isobar ⁷⁹Br was deduced from measurement of ⁸¹Br. Now the ⁷⁹Br interference can be eliminated and ⁷⁹Se can be measured by the PX-AMS directly. The half-life of ⁷⁹Se was re-measured. Two ⁷⁹Se samples have been used.

From the measured decay rate, dn/dt, and the number of ⁷⁹Se atoms, N, the half-life($T_{1/2}$) can be deduced using the relation of dn/dt=-(ln2)· $N/T_{1/2}$. From our preliminary experimental results we get the half-life of ⁷⁹Se. The half-life is about $(1.24\pm0.19)\times10^5$ a. The data for determination of the half-life are given in Table 1. The error is due to the systematic uncertainty, the uncertainty of ⁷⁹Se X-ray detection efficiency and the reproducibility in reading ⁸⁰Se current and ⁷⁹Se K_{α} counts, respectively.

Table 1 Data for determination of the ⁷⁹Se half-life

Sample No.	(⁷⁹ Se/Se)/10 ⁻⁸	$N_{79}/{ m atoms \cdot (mgCdSe)^{-1}}$	$(\mathrm{d}n/\mathrm{d}t)/(\mathrm{dis/min})\cdot(\mathrm{mgCdSe})^{-1}$	$T_{1/2}/a$
1	$3.88 {\pm} 0.57$	$(1.22\pm0.18)\times10^{11}$	1.32 ± 0.07	$(1.22\pm0.19)\times10^{5}$
2	4.02 ± 0.59	$(1.26\pm0.18)\times10^{11}$	1.31 ± 0.07	$(1.27\pm0.19)\times10^5$
Mean value				$(1.24\pm0.19)\times10^{5}$

5 Conclusions

From these experiments, it can be seen that combining projectile X-ray detection with AMS technique provides an effective method for detecting heavy nuclei at relatively low ion-energy. The isobaric interference and the isotopic interference currently limit the 79 Se detection sensitivity. A time of flight detector set in the exit of AMS beamline will allow rejection of the isotopic interference. The isobaric interference could also be reduced by combining PX-AMS with a SBD detector placed behind a relatively thin Y target. The SBD could be made from a residual energy $E_{\rm R}$ detector. Exploring chemical separation technique to further lower the Br background can also reduce the isobaric interference. Then the sensitivity of 79 Se detection will be 79 Se/Se \sim 10 $^{-10}$ -10 $^{-11}$.

References

- 1 Wagner M J M, Synal H S et al. Nucl Instr Meth, 19994, B89:266
- 2 Artigalas H, Debrun J L et al. Nucl Instr Meth, 1994, B92:227
- 3 McAninch J E, Bench G S et al. Nucl Instr Meth, 1995, B99:541
- 4 Jiang S S, Jiang S et al. Chin Sci Bull, 1997, 42:30
- 5 Kubo H, Jundt F C, Purser K H. Phys Rev Let, 1973, 31:674
- 6 Garcia J D, Fortner R J Kavanagh T M. Rev Mod phy, 1973, 45:111