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In the process of neutron spectrum measurement using the multi-sphere neutron spectrometer, energy re-
sponse functions and detector readings should be applied to neutron spectrum unfolding. Mathematically, there
can be multiple solutions to this problem, but only one actual neutron spectrum exists. Compared with com-
mon numerical spectrum unfolding methods, genetic algorithms have the characteristics of global optimization
and probabilistic search. Therefore, they are chosen to be the spectrum unfolding algorithms for the multi-
sphere neutron spectrometer (MNS IL100) developed by Tsinghua University. Firstly, the detector and different
size polyethylene spheres of MNS IL100 were modeled to calculate the energy response functions by applying
Monte Carlo simulation. Then based on the physical and mathematical properties of the spectrum unfolding
problem by using genetic algorithms, effective search space and proper fitness function were determined to im-
prove the efficiency of search and iteration. The elitism replacement scheme was used to ensure convergence
and the pseudo-parallel strategy was used to inhibit premature convergence. According to the algorithms men-
tioned above, a spectrum unfolding code was developed and tested with several typical neutron spectra. At last,
MNS IL100 and the spectrum unfolding code were used in actual experiment of 2>>Cf neutron source spectrum
measurement. The experimental result is in good agreement with the 2>?Cf standard neutron spectrum, verifying
the effectiveness and practicality of using genetic algorithms to unfold the neutron spectrum with combination

of several processing strategies.
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I. INTRODUCTION

A. Spectrum unfolding problem of multi-sphere neutron
spectrometer

Multi-sphere neutron spectrometer, also called Bonner
sphere neutron spectrometer [1], was proposed by Bram-
blett in 1960. Because it has a lot of advantages such as
wide neutron energy range covering from thermal neutrons
to high energy neutrons, simple response functions, almost
isotropic and high sensitivity, multi-sphere neutron spectrom-
eter is widely used in radiation protection applications [2].

Multi-sphere neutron spectrometer mainly consists of a se-
ries of different radius polyethylene spheres, with a thermal
neutron detector placed in the center of each polyethylene
sphere. Different size spheres have different neutron slowing
down abilities and different neutron fluence response func-
tions. As the radius increasing, the peaks of the response
functions gradually move to high energy area. These response
functions can be obtained by using Monte Carlo simulation.

For a given multi-sphere neutron spectrometer, the rela-
tionship between neutron spectrum, response functions and
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detector readings can be expressed by the following mathe-
matical equation [4]:

Ni:/OORZ-(E)é(E)dE—ksZ- (i=1,2,3..,n), (1)
0

where R;(E) represents response function; @(E) represents
neutron spectrum; N, represents detector reading; €; repre-
sents measurement uncertainty; ¢ represents detector number;
n represents quantity of detectors.

This equation shows the spectrum unfolding principle of
multi-sphere neutron spectrometer. Without considering ¢;,
the spectrum unfolding problem is solving neutron spectrum
@ (E) under the condition of given response functions R;(E)
and detector readings N;. Mathematically, the response func-
tions R;(E) are given in discrete form at many energy groups,
and it is not possible to get a continuous function ¢(F)
depending on R;(E) and several detector readings. There-
fore, ®(E) is solved in discrete form with the whole energy
range divided into many energy groups as response functions
R;(FE), and neutron fluence at each energy group is to be
solved. Then the integral equation is rewritten to discrete ma-
trix form as follows:

m

Ni:ZRij(E)qﬁjJrai (i=1,2,3..,n), (2
j=1

where R;;(E) represents response matrix; @; represents neu-
tron spectrum in discrete form; j represents energy group
number; m represents the quantity of energy groups.
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By now, the spectrum unfolding problem is abstracted to
a linear equation group solving problem. There are n equa-
tions but m unknown numbers. Unfortunately, the quantity
of detectors n is far less than the quantity of energy groups
m normally, such as no more than 10 detectors only, but 100
energy groups for the accuracy requirement. With less equa-
tions but more unknown numbers, mathematically this linear
equation group has many solutions, but there is only one ac-
tual neutron spectrum. So it is hard to solve this problem by
using common numerical methods.

B. Spectrum unfolding using genetic algorithms

Genetic algorithms [5] simulate the natural biological evo-
lution process, depending on the theory of survival of the
fittest, using group search technology, to search for the global
optimal solution. Genetic algorithms, which are very suitable
for optimization problems, have the characteristics of global
optimization and probabilistic search, ensuring that the search
space evolves into the state that includes or approaches to the
optimal solution. For specific question, there is search space
generation ¢t. Depending on the fitness evaluations, some so-
lutions are selected, while some are eliminated, followed by
code space genetic operators such as crossover and mutation
which simulate chromosome genetic manipulations. At last
search space generation t+1 is generated and the process will
be repeated from the beginning until the optimal solution is
obtained. The process of genetic algorithms is shown as fol-
lows:

Search Space

Generation t

Fitness
Evaluations

(_'a

Search Space Genetic

Crossover

Search Space
Generation t+1

Fig. 1. Process of genetic algorithms.

Considering these above characteristics, genetic algorithms
are especially suitable for the kind of problems searching for
the optimal solution without enough known conditions, so
that they were chosen to unfold the neutron spectrum. Free-
man developed the genetic algorithm unfolding code UM-
RGA [6] using multi-seed averaging technique and monoen-
ergetic peak reward technique. UMRGA was tested with
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the data provided by EURADOS which contains 8 differ-
ent radius spheres and 47 energy groups. Mukherjee devel-
oped BONDI-97 [7] genetic algorithm spectrum unfolding
tool operating on Microsoft EXCEL. This paper presented a
new spectrum unfolding code using genetic algorithm with
combination of several processing strategies including proper
fitness function selection, elitism and pseudo-parallel. The
unfolding code, which was verified by typical spectra tests
and actual experiment, can be successfully applied to multi-
sphere neutron spectrometer MNS IL100 which contains 9
different radius spheres and 100 energy groups.

II. METHODS
A. Coding and decoding

Binary codes are used here to represent solutions. Each
binary code represents one solution. As genetic algorithms
are executed in search space which contains many solutions,
there should be many binary codes to represent the whole
search space.

If the maximum possible value and the minimum possible
value are defined as V,,,, and V,,;,, and the precision is
P, then the binary code length L can be determined by the
following formula:

V;uaa: - V;nin

<P
ot 1 =T )

The binary codes can be translated to the real solution val-
ues by using the following equation:

V;naz - ‘/mzn

L
= Voin+ (30271 25—

i=1

“)

It is known that the minimum possible value of neutron flux
is zero. Determining the maximum possible value is very im-
portant because it will affect the precision and the code length
which will determine the workload and solving efficiency.
For each energy group and detector pair, supposing that the
detector reading is only generated from this energy group, the
maximum possible value at this group is determined:

mas (B) = Ni/Rij (E). (5)

There are n detectors, so n maximum possible values for
each group can be calculated by Eq.(5), while the real maxi-
mum possible value at this group is the minimum of these n
values:

P,

Djpae (E) = MIN(Ni/Rij(E)). ©)

max

Because if there is any solution value beyond the minimum
of these n values, the detector readings calculated by Eq. 2
will exceed the real detector readings.

The binary codes can be generated randomly for and only
for the original search space. This means the algorithms do
not need preset spectrum. Then the coding and decoding pro-
cess can be described as the following figure:
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Fig. 2. (Color online) Coding and decoding process.

B. Fitness functions, selection, crossover and mutation

The following two equations are used here as fitness func-
tions to evaluate solutions:

1
File) = s weae @
Fy(x) =C =Y (N; = N})? /N7, (8)
=1

C= MAX(zn:(Ni — N))?/N?) - 2.

i=1

where

Firstly the expected detector readings N/ are calculated
by using the solution values and Eq. 2, then the function
values Fi(z) and F>(z) can be determined. Obviously, if
the solution is closer to the optimal solution, its function
value will be larger, then its probability to be selected will
be larger. Roulette wheel parent selection [8] is used as selec-
tion method here to decide which solutions should be selected
into the next generation depending on the probability calcu-
lated by normalization of all the function values of solutions.
Larger probability means more chance to be selected into the
next generation, but not definitely.

Code space genetic operators crossover and mutation,
which simulate chromosome genetic manipulations chias-
mata and variation, are the methods for generating new so-
Iutions. One-point crossover and bit mutation [8] are used
here.

C. Elitism replacement scheme

Elitism [9, 10] replacement scheme here is used to ensure
the convergence. The scheme is that after the evolution pro-
cess of current generation completed, the best solution of next
generation will be compared with the best solution of current
generation. If the best solution of next generation is better
than the best solution of current generation, the elitism re-
placement scheme will be skipped, otherwise, the best solu-
tion of current generation will be forced to be saved into next
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generation to replace the worst solution of next generation.
This scheme will prevent the best solution from being elimi-
nated through the selection operation which will significantly
improve the performance of genetic algorithms [10].

D. Pseudo-parallel strategy

Pseudo-parallel strategy is used to inhibit premature con-
vergence. Premature convergence means that solution pro-
cess converges to local optimal solution instead of global op-
timal solution prematurely. In parallel genetic algorithms,
the search space will be divided into a number of sub search
spaces. The basic genetic algorithms are executed in these sub
search spaces independently. After one generation evolution
processes of every sub search spaces completed, some infor-
mation will be exchanged between these sub search spaces, so
that the population diversity will be preserved to inhibit pre-
mature convergence. The “pseudo-parallel” means it is paral-
lel logically but serial physically, with the parallel algorithm
being implemented in a serial way. The island model [9] is
applied here as information exchange method. For each sub
search space, one swap-in sub search space and one swap-out
sub search space are selected randomly. The worst solution
of the swap-in sub search space will be replaced by the best
solution of current sub search space, and the worst solution
of the current sub search space will be replaced by the best
solution of the swap-out sub search space.

III. RESULTS

According to the algorithm mentioned above, a spectrum
unfolding code was developed with different strategies and
different fitness functions. Code verification and validation
depended on the multi-sphere neutron spectrometer MNS
IL100 developed by Tsinghua University. Firstly the energy
response functions should be calculated. The whole energy
range was divided into 100 energy groups in logarithmic co-
ordinates. MCNP-4C was used to calculate the response func-
tions of 9 different radius spheres which are 0, 2, 5, 6, 7, 8,
10, 12 and 15 cm. These 9 energy response function curves
are shown in Fig. 3.

A. Simulation tests

Figure 4 shows three typical neutron spectra used in sim-
ulation tests which are combinations of several differential
fluence spectra mentioned in reference [6].

1. 252Cf spontaneous fast fission spectrum.

2. Combination of thermal Maxwellian spectrum, monoener-
getic neutron beams spectrum and uniform distribution spec-
trum.

3. Combination of thermal Maxwellian spectrum and 252Cf
spontaneous fast fission spectrum.

Four kinds of genetic algorithms were tested and compared
here:

1. Simple genetic algorithm (SGA): Elitism replacement
scheme and pseudo-parallel strategy are not applied to SGA.
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Fig. 3. (Color online) Energy response function curves of 9 different radius spheres.
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Fig. 4. (Color online) Neutron spectra used in simulation tests.
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Fig. 5. (Color online) Calculation results using different genetic algorithms with spectrum 1.

Eq.(7) is used as fitness function here. The population size 2. Simple genetic algorithm with elitism (ESGA): Elitism re-
is 2000, crossover rate is 0.06, mutation rate is 0.004, code placement scheme is added to ESGA based on SGA.
length is 1000 and iteration number is 10 000. 3. Pseudo-parallel genetic algorithm with elitism (EPPGA):
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Fig. 6. (Color online) Convergence curves of Fx and F¢ using different genetic algorithms with spectrum 1.
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Fig. 7. (Color online) Averaged results of the three typical neutron spectra using EPPGA.

Pseudo-parallel strategy is added to EPPGA based on ESGA.
The subpopulation size is 100, subpopulation number is 20,
so that the total population size can keep consistent with
ESGA.

4. Pseudo-parallel genetic algorithm with elitism and differ-
ent fitness functions (EPPGA?2): Eq. 8 is used as fitness func-
tion in EPPGA?2 to replace Eq. 7 in EPPGA.

Equation 2 was used to calculate the detector readings with
these spectra, then the detector readings were inputted into the
spectrum unfolding code to solve the spectra. The following
two functions were used to evaluate the performances of the
unfolding code with different kinds of genetic algorithms. N/
and dij’. represent the calculation results of detector readings
and neutron spectrum in discrete form. Lower values of Fiy

and F3 mean better performance.

Fy = MIN(Y (N; - N})?/N?), ©)
iRl

Fp=MIN() (&; — ©})?/3}). (10)
j=1

Figure 5 shows the calculation results of different genetic
algorithms with spectrum 1. It is shown that result of EPPGA
is the best one although the advantages are not very obvious.
However, the performance comparison of different genetic
algorithms with spectrum 1 depending on the convergence
curves of Fiy and F'g, which are shown in Fig. 6, proves that
the convergence rate and convergence precision of EPPGA
are much better than the other three genetic algorithms.
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Fig. 8. 252Cf neutron source spectrum unfolding result.

Considering the large scale fluctuations of the original re-
sult, these original 100 values at 100 energy groups are aver-
aged to 25 values at 25 energy groups. The averaged results
of the three typical neutron spectra using EPPGA are shown
in Fig. 7.

B. Actual >>2Cf spectrum measurement

The MNS IL100 and the spectrum unfolding code were
used in actual experiment of 2°2Cf neutron source spectrum
measurement. Fig. 8 shows the function curve of the standard
spectrum of 2°2Cf [11] and the original 100 values calculation
result by using EPPGA.

Figure 8 shows that from 0.1 MeV to 10.0 MeV, the cal-
culation result is in good agreement with the 2°2Cf standard
neutron spectrum, however, there are some distributions in
low energy area which does not appear in standard neutron
spectrum. Actually this is the thermal neutrons generated
from the original neutrons which are slowed down after the
effect of scattering from wall.

IV. CONCLUSIONS

It can be concluded that the EPPGA calculation results of
simulation tests with several typical neutron spectra match
up with the expected results, and the EPPGA calculation re-
sult of actual experiment is in good agreement with the 252Cf
standard neutron spectrum, verifying that by determining ef-
fective search space and proper fitness function, and by using
the elitism replacement scheme and the pseudo-parallel strat-
egy, the genetic algorithms were applied to spectrum unfold-
ing problem successfully. However, the calculation results of
simulation tests have large scale fluctuations. This is because
the algorithms search direction depends on the fitness evalua-
tions. While despite the smoothness of the iteration results,
the fitness function used here only focused on the degrees
of closeness between the calculation results and the optimal
result, which led the results to be not smooth. Smoothness
ensuring part is being considered to be added to the fitness
function, but there is no theory for reference about determin-
ing its form and weight. The future work will focus on the
construction of the smoothness ensuring part.
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