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Abstract   The  statistical  mechanics  of  an  ideal  polymer  chain  entangled  with  static  topological  constraints  is  studied  using  a  superspace

approach, in which the probability distribution of the polymer is obtained as solutions of the Fokker-Planck equation in a superspace with an

inner  structure  characterized  by  the n-generator  free  group.  The  theory  predicts  that  the  force-extension  curve  of  the  polymer  under  the

topological constraints has the generic form F=kl+Z/l, where l is an effective extension. Aside from the elastic term that is linear in l, the force-

extension  curve  contains  a  universal  term  of  the  form Z/l.  The  magnitude  of  this  topological  term  is  determined  by  the  topological  charge

number Z,  which characterizes the topological  nature of the static constraints.  The theoretical  results are further verified by a scaling analysis

based on a blob model of the chain conformations.
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INTRODUCTION

Polymer  entanglement  presents  a  great  challenge  in  polymer
physics.  The  development  of  a  theoretical  framework  for  the
study of dynamic topological constraints is an extremely difficult
and  unsolved  problem.  On  the  other  hand,  great  progresses
have  been  made  for  the  less  difficult  problem  involving
polymers entangled with static  topological  constraints.  For  the
case of  one polymer chain entangled with one static topologi-
cal  constraint,  pioneering  work  has  been  carried  out  by  a
number of researchers.[1−8] In particular, using an analogue with
the  Schrödinger  equation,  Edwards[2,3] was  able  to  derive  the
two-segment  correlation  function  of  a  polymer  chain  winding
around  a  pole  with  a  given  winding  number  on  a  2D  plane
(Fig. 1a). It was speculated that this method could be extended
to the cases of a polymer chain entangled with more than one
poles  or  multiple  static  topological  constraints.  However,  the
problem of one polymer chain under multiple static topological
constraints remains unsolved[7] because of the noncommutative
character of multiple entanglements.[8]

In  the  current  study,  we  formulate  the  topological  con-
straints  of  an  entangled  polymer  chain  using  a  superspace-

based field  theoretical  approach,  which combines  the meth-
od  from  random  walks  on  free  groups[9] and  Edwards'  ap-
proach[2] for the one-pole case. In this theoretical formulation,
the probability distribution of the chain segments is obtained
by solving the Fokker-Planck or diffusion equation in a super-
space  consisting  of  a  set  of  subspaces,  and  each  subspace
corresponds to a given entangling mode. This new approach
is  applied  to  the  problem  of  a  polymer  chain  subjected  to
n poles  on  a  2D  plane.  In  this  case,  the  superspace  has  a
mathematical  structure  isomorphic  to  the n-generator  free
group.[10] For  the  case  with  one  entangling  pole,  the  super-
space  approach  gives  a  simpler  solution  as  compared  with
the  previous  approaches.[1−6] Furthermore,  the  force-exten-
sion curve of a polymer chain entangled with two poles is cal-
culated, which contains a term originated from the topologic-
al  constraints.  The  topological  term  of  the  force-extension
curve is determined by a topological charge number which is
an invariant for a given polymer entangling mode but it does
not solely depend on the winding number. Physically, the to-
pological charge reflects the number of independent perturb-
ations along the entangled chain that is not Gaussian[11] or it
measures  how  much  the  chain  conformation  deviates  from
Gaussian  due  to  the  topological  constraints.  To  our  best
knowledge, this topological invariant is a new type of topolo-
gical  charge  and is  unique for  Gaussian  chains  since  there  is
no such correspondence in other fields [12] where the topolo-
gical invariants normally depend on the winding number.
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THEORETICAL METHOD

R (s)
The theoretical approach starts with the partition function of an
ideal  polymer  chain  whose  conformation  is  described  by  a
space curve ,[2,13,14]

Z = ∫ e
− ∫1

0 Nb
2»»»»»» ∂R(s)∂s

»»»»»»2ds
DR (s) (1)

Nb2

3Nb2/2

q(r, s)
Z = ∫ q(r, s = 1)dr

s

where  the  pre-factor  in  the  exponential  is  instead  of
 because the chain is confined in a plane. In practice, this

path  integration  is  computed  in  terms  of  the  end-integrated
distribution  function  or  propagator, ,  of  the  polymer
according  to .  The  propagator  is  in  turn
defined as the end-integrated probability distribution of the th

segment,

q (r, s) = ∫ e
−∫ s0Na2»»»»»» ∂R(τ)∂τ

»»»»»»2dτδ (r − R (s))DR (2)

q(r, s)
s
q(r, s)

The propagator  could be regarded as the correlation
function between the initial  segment and the segment .  In-
stead  of  performing  the  path  integration,  the  function 
can be obtained as the solution of the Fokker-Planck or diffu-
sion equation:[2,13,14]

∂q
∂s

= Nb2

4
∇2q

s

q1 q
q0 q0

q1(s + Δs)

For an ideal chain in the presence of topological poles, this
correlation function not only depends on the arclength  and
the position r but also depends on the “history” or the traject-
ory  of  the  chains  (Fig.  1a).  For  example,  if  denotes  that
winds the pole once and  does not wind the pole,  then 
cannot  "diffuse"  into .  While  in  the  conventional
field theory of  Gaussian chain,  the propagator  does not  spe-

q0 q1(s + Δs)cify  the  entangled  mode  so  can  "diffuse"  into ,
which  is  obviously  not  realistic  for  a  real  entangled  polymer
chain.  As  a  consequence  of  this  topological  constraint,  spe-
cial  techniques  are  required  to  treat  the  multi-valued  nature
of the problem.

q(r, s) qg(r, s)
0→s qg(r, s)

qg(r, s)

One method to  explicitly  incorporate  the  topological  con-
straints  of  the  poles  into  the  probability  distribution  of  the
polymer  conformations  is  to  express  the  end-integrated
propagator  in terms of entangling modes , where
the  subscript g denotes  different  entangling  modes  of  the
chain section  relative to the n-poles.  Each mode 
lives  in  its  own  two-dimensional  subspace  labeled  by g and,
specifically,  is  the  solution  of  the  diffusion  equation
within that subspace,

∂qg

∂s
= Nb2

4
∇2qg (3)

RESULTS AND DISCUSSION

Gn

From  the  perspective  of  group  theory,  the  index g can  be
regarded  as  an  element  of  the n-generator  free  group ,[10]

which could be properly defined using a group-acting-on-a-set
method:

Sn = {Sg}1.  A  superspace  is  defined  as  a  set  containing  all  the  sub-
spaces  that represent all possible entangling modes
due to the n poles. {a, b, c . . . }

aSg=Sag

2.  There  are n basic  operations  or  generators ,
each corresponding to crossing a cut of a pole in some given
direction (see Fig. 1). The action of the generator on the sub-
spaces  obeys  the  rule .  In  general,  these  generators
do not commute.

k=k+1

k=k–1
a

a–1

b

b–1

q0(r,s) q1(r,s+Δs)

q1(r,s)

a b

c d

s=0

The cut

Cut b

Cut a

 

⋯− 1, 0, 1⋯

Fig. 1    A new strategy to solve the problem of polymers entangled with static topological  constraints.  (a)  A
polymer  chain  entangled  with  one  pole.  The  propagator q0(r, s)  cannot  diffuse  into q1(r, s +  Δs)  because
entangling  modes  are  different  for  these  two  quantities.  In  (c),  the  subspaces  labelled  with k = .
Crossing  the  cut  from  the  right  to  left  the  winding  number  k  will  get  a`+1'.  In  (b)  and  (d),  a  polymer  is
entangling with two poles. For each pole, one can define a cut that connects the pole to an infinity point. The
generator a corresponds  to  cross  the  cut a from  the  right  to  left  while  its  inverse a−1 from  left  to  right.  The
entangling mode of (b) corresponds to b−1 a−2.
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Gn=< a, b, c, ⋅ ⋅ ⋅ >

Gn
S = {Sg∣ g ∈ Gn}

3. The n-generator free group  can be con-
structed  based  on  these n generators.  There  is  a  one-to-one
mapping  from  the  superspace  to  the  group , i.e.,

.
Gn

S0
gS0 g ∈ Gn g

Operationally,  reflects how the subspaces are glued to-
gether at the cuts to form the superspace. In practice, it spe-
cifies the boundary conditions of the propagator at the cuts.
Details are given in the electronic supplementary information
(ESI).  In order to study the statistical  mechanics of a polymer
chain  subjected  to  the  poles,  the  entangling  modes  of  the
chain relative to the poles need to be specified. Mathematic-
ally, an entangling mode is uniquely specified by putting one
end of  the chain on a subspace  and the other end on an-
other  subspace  with .  The  group  element 
uniquely  determines  the  entangling  mode.  In  what  follows
we apply this superspace approach to the one-pole and two-
pole  problems,  focusing  on  computing  the  corresponding
force-extension curves of the chain.

k = {⋯− 1, 0, 1⋯}
For  the  one-pole  problem,  the  superspace  is  the  complex

logarithm Riemann surface (CLRS) (Fig.  S1 in ESI).  The 1-gen-
erator  free  group is  simply  isomorphic  to  the whole-number
group  or  the  one-winding-number  representation

.  Obviously,  all  the  elements  in  this  group
commute. In this case, the problem can be analytically solved
(see  ESI).  Furthermore,  numerical  solutions  of  the  diffusion
equation have also been obtained using nine subspaces with

∣k∣ ≤ 4.[15] Compared  with  previous  work,[1−6] the  superspace
approach  gives  a  simpler  solution  to  the  one-pole  problem
(Eqs. S1−S5 in ESI).

G2=<a, b>
a b

a2b−2a−1b(≠ab−1) (ka, kb)
eiψa+iψb

∣ka∣ + ∣kb∣ < 4

For  the  two-pole  problem,  the  superspace  corresponds  to
the case with n=2, where  is the two-generator free
group. Because the two generators,  and , do not commute,
the  group  element  or  the  'word'  normally  takes  the  form  of,
e.g., .  Therefore,  the  group  cannot  be  rep-
resented by  two winding numbers  nor  by  two phase
angles .  Analytic  solutions  of  the  two-pole  problem
are  not  available.  Instead  we  numerically  solve  the  problem
with two poles. Specifically, the diffusion equation is numeric-
ally  solved  using  53  subspaces  with  the  total  winding  num-
ber  smaller  than  4, i.e., .  The  Cayley  graph  of
these  53  subspaces  is  shown  in Fig.  2,  demonstrating  how
these  subspaces  are  glued  together  and  also  specifying  the
intricate  boundary  conditions  of  the  diffusion  equation  (de-
tails are given in ESI). We also have carried out detailed calcu-
lations  to  confirm  that  these  53  subspaces  are  sufficient  for
the numerical computations (Fig. S3 in ESI).

{Sg}
qg

We  emphasize  that  a  polymer  chain  entangled  with  mul-
tiple  poles  can  be  seen  as  a  random  walk  on  a  superspace

 with  a  free  group  structure,  which  is  different  from  the
random  walk  on  free  groups[9] where  the  continuous  space
has been actually neglected (or they only discuss the probab-
ility function of  which does not depend on the position r).

 
G2∣ka∣ + ∣kb∣ < 4 a b

Fig. 2    A Cayley graph for the two-generator free group  of the two-pole case. Only 53 group elements or subspaces with the
total  winding number smaller  than 4 ( )  are given.  The meanings of  the group generators  of  and  in  terms of
topological constraints are shown in the center of the graph. Each group element represents a specific entangling mode.
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{Sg}
In the random walk on free groups,[9] they 'jump' between the
group elements of a given free group; while in this work, we
'walk' in the subspaces .

q
Z (L)

G (L) = −kBTInZ (L)
F (L) = −∂G/∂L

In  order  to  obtain  basic  statistical  properties  of  a  polymer
chain subjected to static topological constraints, the force-ex-
tension curves of a polymer entangling with one pole or two
poles in a 2D plane are computed. The procedure of calculat-
ing  the  force-extension  curves  is  illustrated  by  the  one-pole
problem.  In  this  case,  we  let  the  polymer  wind  the  pole k-
times with corresponding winding number k or −k and fix the
two ends with a distance L between them. We then numeric-
ally or analytically solve the diffusion equation of ,  which in
turn gives the partition function  and the corresponding
free energy, . The force can finally be calcu-
lated using .

Fig.  3 shows  the  force-extension  curves  of  several  en-

tangling  modes  of  a  polymer  chain  in  the  presence  of  one
pole or two poles, along with some of the chain density pat-
terns.  From  the  force-extension  curves,  it  can  be  seen  that
when the extension L is small, the force does not exhibit a lin-
ear dependence on the extension. This non-linearity could be
qualitatively explained by an entropy-loss argument (see Fig.
S5b in ESI).

For  large  extensions,  the  force-extension  curves  exhibit  a
linear  behavior  with  gaps  between  different  entangling
modes.  These  force  gaps  could  be  well  explained  by  a  blob
model[16] with  small  perturbations  (see  ESI).  Specifically  the
blob  model  predicts  that  the  force-extension  curves  at  large
extension L could be approximated by,

F =
2l (L, rp, d) kBT

Nb2
+

ZkBT

l (L, rp, d) , (4)

l(L, rp, d)where  is  an  effective  extension  of  the  polymer  chain,

 

N=400 rp =
√

2b d
5b b

Fig. 3    (a) Force-extension curves of different winding numbers for the one-pole case. The extension L measures the distance between
the two chain ends. The square is given by the numerical calculations. Solid line is obtained by analytically solving the diffusion equation
on  a  complex  Riemann  plane  (Eq.  S3  in  ESI).  Dash  line  is  given  by  the  blob  model  with  perturbations.  (b)  Force  curves  of  different
entangling modes for the straight case of the two-pole problem (Chain ends and poles are in a straight line). Solid line is by numerical
calculations and dash line by a blob model with perturbations. (c) Force curves of different entangling modes for the vertical case of the
two-pole (Chain ends and poles are vertical). (d) Patterns of chain segment density for different entangling modes in (b) and (c). Upper
ones are for (b) while lower ones for (c). Parameter setting: chain length , pole radius  and the distance between poles  is

 with  the Kuhn length.
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rpwhich  is  a  function  of  the  extension,  the  pole  radius  and
poles'  configuration characterized by the poles'  separation d in
the  two-pole  case.  The  quantity Z is  a  topological  charge
number of the entangling mode. For one-pole case, Z=0 for k=0
and Z=1 otherwise. For two-pole case, the dependence of Z on
the entangling modes are listed in Fig. S7 (in ESI).

l (L, rp, d) ≈ L + 2kπrp 2kπrp

The first  term in  Eq.  (4)  is  a  linear  function of  the effective
extension l, which describes an entropic spring with an exten-
sion l.  Obviously  this  term  depends  on  the  specific  en-
tangling mode (including the winding number) as well as on
the  pole  configuration.  For  example,  in  the  one-pole  case

,  where  the  contribution  (k is  the
winding  number)  presents  a  hidden  extension.  The  expres-
sions  of l for  several  entangling  modes  of  the  two-pole  case
are given in ESI.  It  is noted that Eq. (4) is only valid if  there is
no knot or self-entanglement inside the polymer chain. Knots
inside  the  chain  will  certainly  increase  the  hidden  extension
by a small amount for a real polymer.

L ≫ d ≫ rp
an1bn2an3 . . . bnm {nk} (m − 1) d(m − 1) d + d2/L

The distance d between the topological  constraints  is  also
important  for  the  entangled  behavior  of  polymers,  as  poin-
ted out in previous literature.[17,18] In this work, we found the
distance d mainly influences the force through the hidden ex-
tension l(L, d)  as  shown  in  Sect.  IV-2  in  ESI.  Specifically,  for

 and  the  entangled  mode  that  can  be  expressed

as  with  non-zero  integers,  the  hidden
extension  is  elongated  by  about  for  the  straight
case and by about  for the vertical case.

1/l

rp = 0
F = 2lkBT/Nb2 + kBT/l + O ((1/l)2) l2 ≫ Nb2

The second term in Eq. (4), which is proportional to , can
be  identified  as  a  pure  topological  term  which  depends  on
the topological charge number Z. This term is universal and it
reveals  the  fundamental  properties  of  the  static  topological
constraints of polymer entanglements. In particular, the topo-
logical  charge  number  depends  on  the  specific  entangling
mode  but,  interestingly,  it  is  independent  of  the  winding
number.  This  independence  of  the  winding  number  is
demonstrated  in  Fig.  S2  (in  ESI).  Furthermore,  we  have  ana-
lytically  shown  that  for  the  one-pole  case  with ,

 when  (see Eq. S15

in  ESI),  firmly  confirming  the  existence  of  the  topological
charge for  an entangled polymer with a  single static  topolo-
gical  constraint.  The  existence  of  the  topological  charge(s)
can  be  further  confirmed  by  the  comparison  of  the  force
curves  given by the numerical  calculations  and those by the
blob mode (Eq. 4).

Δx
Δx

Δx

Although  the  topological  charge  emerges  analytically  in
the one-pole case (Eq. S15 in ESI), the physics behind this to-
pological  invariant  is  obscured  by  the  tedious  mathematical
derivations.  We  have  discovered  that  the  topological  charge
could  be  extracted  from  an  entangled  chain  by  perturbing
the  blob  model.  Intuitively,  if  one  perturbs  an  unentangled
Gaussian  chain  (Fig.  4a)  with  a  displacement  of  the  order  of

, the chain will be elongated by an amount of the order of
2.  Such  second-order  terms  could  be  eliminated  by  the

Gaussian  integral  when  all  possible  small  perturbations  are
summed up to obtain the partition function (a  rigorous ana-
lysis  is  given  in  ESI).  Therefore,  perturbing  an  unentangled
Gaussian chain will not result in any topological charges. This
type of perturbations will be termed as the Gaussian perturb-
ation.  If  the chain is  winding a  pole  once,  a  perturbation 

Δx

Nb2/l
kBTlnl

kBT/l
Δx

Δy (Nb2/l)2

(Fig. 4b) will cause the chain to elongate by an amount of the
order  of ,  which  cannot  be  absorbed  by  the  Gaussian  in-
tegral.  Instead,  such  linear  terms  will  lead  to  a  prefactor,

,  in  the  partition  function,  resulting  in  an  additional
term  in  the  free  energy  of  the  form  or  an  additional
term in the force, .  From this argument it could be con-
cluded  that  an  independent  non-Gaussian  perturbation  will
contribute a topological charge to the force-extension curve.
If there are two independent non-Gaussian perturbations, 
and ,  integration of these two independent perturbations

would result in a prefactor  and, therefore, two topo-

logical  charges  (see Fig.  4c).  For  different  entangling modes,
the  topological  charge  number  could  be  different  and  a
simple  way to  determine the charge number  is  to  count  the
number  of  independent  non-Gaussian  perturbations.  Knots
or self-entanglements inside the chain may also contribute to
the topological  charge number and unfortunately the above
method cannot be extended to this type of dynamical topolo-
gical constraints.

Although  many  important  theoretical  results  have  been
obtained  in  the  random  walk  on  free  groups[9] as  well  as  in
the problem of a ring polymer in an array of obstacles,[7,8] un-
fortunately, these results are difficult to be applied in the cur-
rent work.

CONCLUSIONS

In  summary,  we  have  developed  a  superspace  approach  to
studying  the  statistical  mechanics  of  an  ideal  polymer  chain
entangled  with n fixed  poles.  This  approach  gives  a  simpler

 

Δx
Δx2

Δx
Δx

Δx Δy

Fig.  4    Physical  origin  of  topological  charges  of  polymer
entanglements.  (a)  Gaussian  Perturbation:  When  there  is  no  pole,  a
small fluctuation  will cause the chain length (in terms of the blob
model) to increase about .  But this fluctuation can be eliminated
by the Gaussian integral  during the evaluation of  partition function.
(b)  When  one  pole  is  presented,  a  small  fluctuation  in  some
section of  the chain will  cause the chain to elongate about .  This
fluctuation  cannot  be  adsorbed  and  will  contribute  a  topological
charge.  (c)  Two independent non-Gaussian perturbations contribute
two topological  charges.  For  the given entangling mode (two-pole),
there  are  two  possible  independent  fluctuating  points  which  might
cause the chain to extend about  and  (also see Fig. S6 in ESI),
whose influences cannot be erased.  Topological  charges of different
entangled modes of the two-pole case are given in Fig. S7 (in ESI).
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solution to the one-pole problem compared with the solutions
obtained  by  previous  researchers.[1−6] Furthermore,  the  super-
space  approach  enables  us  to  compute  the  force-extension
curves  of  a  polymer  chain  entangling  with  one  pole  or  two
poles.  The  results  reveal  that  generically  the  force-extension
curves  contain  two  terms  at  large  extension.  The  first  term  is
linear  in  the  effective  extension,  reflecting  the  entropic
contribution  to  the  free  energy.  Whereas  the  second  term  is
proportional to the inverse of the effective extension, reflecting
a  topological  contribution  to  the  free  energy.  The  topological
term  is  determined  by  the  topological  charge  number  of  the
entangling  mode.  The  origin  of  the  topological  charge  is
revealed  by  perturbing  the  blob  model  of  the  chain.  Each
independent  non-Gaussian  perturbation  gives  a  topological
charge.  This  topological  term  characterizes  the  intrinsic  nature
of  polymer  entanglements  with  the  static  topological
constraints.
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