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Abstract   Chirality, commonly found in organisms, biomolecules and nature such as L-amino acids and D-sugars, has been extensively studied in
chemistry and biomedical science. Hence, the demand for simple and efficient construction of chiral structures, especially chiral polymers, has
been rapidly growing due to their potential applications in chemosensors, asymmetric catalysis and biological materials. However, most chiral
polymers  reported  are  prepared  directly  from  chiral  monomers/chiral  catalysts,  the  corresponding  strategies  usually  involve  tedious  and
expensive design and synthesis. Fortunately, chirality induction strategies (such as circularly polarized light, chiral solvation and chiral gelation
etc.) have been known to be highly versatile and efficient in producing chirality from achiral polymers. In this feature article, the current research
on chirality induction, transfer and application in achiral polymer systems is summarized. Furthermore, this article discusses some basic concepts,
seminal studies, recent advances, the structural design principles, as well as perspectives in the construction and applications of chiral polymers
derived  from  achiral  monomers,  with  the  hope  to  attract  more  interest  from  researchers  and  further  advance  the  development  of  chiral
chemistry.
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INTRODUCTION

Nature  has  developed  a  multitude  of  hierarchical  biological
components  with  fascinating  and  complex  superstructures,
such  as  protein,  sugar  and  DNA, etc.,  to  perform  information
storage  and  transport,  pharmaceutical  and  toxicological  activi-
ties,  and  localized  chemical  transformations.[1] Among  these
macromolecular components, chirality is an essential and basic
characteristic. For example, D-sugars are the main components
of DNA and the secondary R-helix structures are also prevalent
in  proteins.[2] Scientists  have  been  inspired  by  nature  and
developed  many  pioneering  concepts  with  respect  to
chirality,  such  as  ‘optical  activity’,  ‘asymmetry’,  ‘enantiomers’
and  ‘chirality’  since  Pasteur's  resolution  of  racemic  tartaric
acid.[3] In  later  years,  as  chirality  was  found  in  various
biomimetic  and  artificial  systems,  it  became  highly  important
not  only  for  fundamental  science  but  also  for  numerous
practical applications, such as molecular and chiral recognition,
chiral sensors, chiroptical switches and asymmetric catalysis.[4]

In recent years, tremendously increasing efforts have been
invested to understand the internal mechanisms and extern-
al influence factors of chirality. Research on the mechanism of

chirality induction, transfer and amplification plays an import-
ant  role  in  asymmetric  synthesis  and  further  applications  of
chirality.[5] Due to the nature of structural diversity, chirality is
hierarchical  and can be observed at  a  broad range of  length
scales  from  subatomic  and  molecular  to  supramolecular,
nanoscopic, macroscopic and galactic levels (Scheme 1).[6] For
instance, only left-handed helical neutrinos are found in phys-
ics, which indicates that chirality is related to parity conserva-
tion in atom. At a molecular level, many chiral molecules exist
in natural (amino acids) and synthetic compounds. These mo-
lecules contain the primary chiral structures generated by the
asymmetric chemical connections of atoms. Further investig-
ations of such molecular chirality can be very important as it
can  provide  general  guidance  for  researchers  to  design  tar-
geted  drugs  and  functional  materials.[7] Furthermore,  chiral-
ity  is  also  expressed  at  the  macromolecular  or  supramolecu-
lar  level,  as  seen  in  the  helical  structures  of  DNA,  secondary
structures of protein,  and tobacco mosaic virus.  Even macro-
scopic  living  systems,  such  as  cucumber  vines,  exhibit  chiral
features.[8] On a light-year scale, our galaxy system is also chir-
al  and  the  spiral  movement  of  the  cosmic  nebula  has  per-
sisted throughout the immense duration of galactic history.

However, these chiral features at different length scales are
inseparable and interrelated, which constitute our whole bio-
logical  systems  and  macroscopic  world.  For  example,  the
primary molecular chirality originates from the asymmetric ar-
rangement of atoms in space around a centre (point chirality),
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axis (axial chirality) or plane (planar chirality),  while the high-
er scale of chirality may be ascribed to the physical or chemic-
al  combinations  between  various  fundamental  chiral  com-
ponents.[9] More  importantly,  further  understanding  of  the
chirality  in  nature  and  the  development  of  asymmetric  as-
sembly  allow  us  to  design  targeted  chiral  superstructures  at
different levels. These in turn could allow scientists to invest-
igate  the  mechanisms  of  chirality  induction,  transfer,  and
amplification from low-level scale into higher hierarchies. As a
result,  these  complementary  and  hierarchical  processes  may
lead  to  deeper  understanding  of  the  chirality  in  biomacro-
molecules, and even in living biological systems.

Among  various  levels,  chirality  at  supramolecular  level  is
particularly  important  because it  is  prevalent  in  the complex
components in living organisms.[10] In addition, with the rap-
id  developments  of  supramolecular  chemistry  and  self-as-
sembly technology, supramolecular chirality has received sig-
nificant  attention and experienced significant  advancements
under  the  efforts  of  researchers.[11] In  general,  supramolecu-
lar  chirality  is  constructed  through  the  nonsymmetric  ar-
rangement  of  building  blocks via weak  noncovalent  interac-
tions,  such as π-π stacking,  hydrogen bonding,  dipole-dipole
interactions  and  host-guest  interactions.[12−15] When  the
building  blocks  prefer  an  asymmetric  packing  mode  during
self-assembly,  a  chiral  architecture  will  be  formed  at  supra-
molecular  scale.  Compared  with  molecular  chirality,  supra-
molecular  chirality  is  generally  more dynamic and stimuli-re-
sponsive  due  to  the  presence  of  weak  noncovalent  interac-

tions.[16] Furthermore,  it  is  not  required  that  all  building
blocks are chiral. In other words, these building blocks can be
chiral, achiral or a combination of both chiral and achiral com-
ponents. There are two main factors that determine whether
a superstructure has supramolecular chirality, (1) one or more
of  the  components  are  chiral  and  interact via non-covalent
bonds  such  that  the  assemblies  have  determined  supramo-
lecular chirality;  (2)  the achiral  components associate in non-
covalent  interactions  but  the  assemblies  adopt  predomin-
antly one-handed helicity.  This means that the supramolecu-
lar  chirality  depends  both  on  the  weak  noncovalent  interac-
tions and the assembly behavior of the building blocks.

Generally,  most  macromolecules  or  polymers  possess
supramolecular  chirality  by  directly  using  chiral  building
blocks in the process of self-assembly.[17−19] This kind of chir-
ality is attributed to straightforward chirality induction biases.
However,  it  requires  tedious  procedures  for  designing  and
synthesizing  targeted  chiral  monomers/catalysts  with  high
enantiopurity  (ee),  or  complex  asymmetric  polymerization
processes. Therefore, supramolecular chirality produced from
achiral building blocks has received much attention in recent
years. Nowadays, some advanced induction strategies, includ-
ing  but  not  limited  to  induction  by  chiral  solvation,  chiral
dopant, chiral gelator, circularly polarized light (CPL) and chir-
al scaffold/template[20−23] have been developed and success-
fully implemented to construct supramolecular chirality from
achiral  building blocks,  which have also been studied by our
group  as  shown  in Scheme  2.  The  process  of  induction

Neutrino Molecule Biomacromolecules Living systems Galaxy

 
Scheme 1    Chiral architectures at various scales, from neutrino to molecule, proteins and DNA biomacromolecules, macroscopic living
systems and galaxy. (Reproduced with permission from Ref. [2]; Copyright (2020) MDPI).

 
Scheme 2    Classification of induced chirality in achiral polymers.
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strategy  usually  involves  chirality  transfer  from  a  chiral  com-
ponent to an achiral one followed by the ordered asymmetric
extension over the entire system. An important mechanism in
chirality induction is the chirality transfer from a chiral source
to achiral polymers, by which chiral ‘information’ can be amp-
lified by achiral  polymers to construct supramolecular  chiral-
ity in an achiral polymer system.

Induced  supramolecular  chirality  is  of  particular  interest
and importance in polymer systems due to its broad range of
applications. The induced chirality in polymer systems can be
constructed by the supramolecular assembly of main-chain or
side-chain  chiral/achiral  polymers.  In  1995,  Yashima et  al.  re-
ported the first example of induced chirality in achiral poly((4-
carboxyphenyl)acetylene) by chiral amines through acid-base
interactions  and  systematically  investigated  the  formation
process  of  one-handed  helices  (Fig.  1).[5,24] Fujiki et  al.  also
reported  the  chirality  transfer  and  amplification  from  chiral
molecules  to  achiral  polysilylene  (PSi)  aggregates  through
weak  hydrogen-bonding  interaction.[25] To  date,  several
methods,  such  as  chiral  solvation,  chiral  gelation,  CPL  and
chiral  doping,  have  been  applied  to  induce  chirality  in  poly-
mer systems.[26−29] It should be noted that in side-chain poly-
mers,  the induced chirality  is  attributed to  asymmetric  pack-
ing of building blocks with right/left-handed direction,  while
for  main-chain  polymers,  the  induced  chirality  is  usually  at-
tributed to the helix chirality of the main-chain backbone. The
induction  strategy  showed  convincing  results  in  inducing
chirality in many achiral polymers, including poly(n-hexyl iso-
cyanate),[30] polysilanes,[31] polyfluorene  analogs,[32] polydi-
acetylene and polyacetylenes.[33]

In  the  past  several  years,  our  group  has  devoted  great  ef-
forts  to  developing  induction  strategies  for  constructing
supramolecular  chirality  in  polymers,  aiming  to  expand  the
scope of such strategies. Significant efforts have also been de-
voted  in  studying  the  inner  mechanism  and  self-assembly
manner. In this feature article, we summarize our recent work
on  the  construction  of  supramolecular  chirality  in  polymer
systems,  mainly  discussing  the  chirality  induction,  transfer,
and application in achiral systems. To induce supramolecular
chirality in polymer systems, different methods of chirality in-
duction  have  been  used,  including  chiral  solvation,  chiral
gelation,  CPL,  chiral  doping  and  chiral  scaffold.  Several  ex-
amples  of  achiral  main-chain  and  side-chain  polymers  with
supramolecular  chirality  constructed  by  the  induction
strategy  will  be  specifically  highlighted.  This  feature  article
aims to stimulate interests  from researchers  in  supramolecu-
lar  chirality  and  make  contributions  to  extending  the  re-

search scope of this strategy to further advance the develop-
ment of chiral chemistry.

CHIRALITY INDUCTION AND TRANSFER

Chiral Solvent
Chiral  solvation  is  a  simple  and  effective  method  for  inducing
chirality in achiral substances, which is commonly used in small
molecules,  oligomers  and  polymer  systems.  As  early  as  1993,
Green et al. first demonstrated that a change in macromolecular
conformation  can  be  observed  in  an  achiral  poly(n-hexyl
isocyanate) (PHIC) driven by a minute chiral solvation energy.[34]

The  obvious  optical  activity  can  be  confirmed  in  the  circular
dichroism (CD) spectrum when the achiral PHIC was dissolved in
several  chiral  solvents.  This  novel  work  shows  that  chirality
transfer can be achieved by simply adding the achiral PHICs into
non-racemic solvents. Motivated by this pioneering study, chiral
solvation has been successfully used to induce chirality in many
achiral  polymers  in  aggregation  state,  such  as  polysilanes,[25]

polyfluorenes[32] and polyacetylenes.[35]

Chiral  limonene  is  a  commercially  available,  inexpensive
and  nontoxic  asymmetric  chiral  source,  which  is  attractive
and  widely  used  in  green  and  cost-effective  supramolecular
assembly.  Several  examples  constructing  supramolecular
chirality using chiral limonene have been presented in recent
studies.  For example, Fujiki et al.  presented many pioneering
studies  on  the  limonene-induced  chirality  of π-conjugated
polymers.[35−38] The  optically  active  aggregates  of π-conjug-
ated  homopolymer  poly(9,9-di-n-dioctylfluorene)  (PF8),
poly(9,9-di-n-decylfluorene) (PF10)  and its copolymers (F8T1
and F8T2 in Fig. 2) with CD and CPL dual signals can be quickly
prepared  in  a  ternary  mixed  solvent,  chloroform  (good
solvent)/limonene  (chiral  solvent)/alkanol  (poor  solvent),[39]

as shown in Fig. 2. The magnitude and sign of CD and CPL sig-
nals  indicated  that  chiral  properties  of  the  aggregates  were
greatly influenced by the type of poor solvent and the enan-
tiomeric purity of chiral limonene. In addition, the order of ad-
dition of  limonene and methanol  strongly affected the mag-
nitude of the induced CD amplitude. The limonene-induction
strategy provides a simple, easy and environmentally friendly
approach for the rapid preparation of chiral polymer aggreg-
ates  with  special  functions.  Subsequently,  Fujiki et  al.  pro-
posed  the  possible  inner  interactions  between  chiral  li-
monene  molecules  and  achiral π-conjugated  polymers  to
study  the  chirality  transfer  mechanism,[32,39] as  presented  in
Fig. 3. Through the WAXD characterization of the aggregates
formed  with/without  chiral  limonene,  it  was  found  that  the
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Fig.  1    Schematic  illustration of  helicity  induction in  polyacetylenes  upon complexation with  chiral
compounds. (Reproduced with permission from Ref. [5]; Copyright (2008) American Chemical Society)
(The online version is colorful.)
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polymer aggregates were mainly formed by the π-π stacking
of  the  conjugated  backbone  and  the  edge-to-edge  stacking
of  the  decyl  chains.  Without  limonene,  one  major  scattering
peak  (2θ=5.4°)  corresponding  to d-spacing  of  16.3  Å  was
presented  in  wide-angle  X-ray  scattering  spectra.  This  is  as-
signed  to  the  interchain  distance  of  the PF10 chains  with  a
spacer  of  decyl  chains,  as  shown  in Fig.  3.  Unlike  the  more
conventional  hairy  rod  polymers,  the  side  decyl  chains  in
PF10 are  perpendicular  to  the  aromatic  plane.  Therefore,  it
was expected that the value of 16.3 Å would be much shorter
than the sum of the two decyl chain lengths,  which is estim-
ated to be 25 Å, on the assumption that two decyl chains ad-
opt the extended form normal to the fluorene rings. The ob-
served d-spacing  of  16.3  Å  suggests  that  the n-decyl  chains
are significantly tilted relative to the direction of the edge-to-
edge  stacking  of  the PF10 main  chains.  However,  the  inter-
chain  distance  of  chiral PF10 aggregates  after  the  induction
of  chiral  limonene  is  16.9  Å  (2θ=5.2°),  which  is  0.6  Å  longer
than the value (16.3 Å) of PF10 aggregates without limonene.
Meanwhile,  the d-spacing  of  the π-π stacks  remained  un-
changed during the induction process. These results suggest
that the n-decyl chains are raised in the direction of the edge-

to-edge  stacking  of  the PF10 main  chains  due  to  the  pres-
ence  of  limonene.  Therefore,  the  limonene  molecules  likely
exist  closer  to  the n-decyl  chains,  leading  to  the  incorpora-
tion of limonene in PF10 aggregates and resulting in the CH-
π interaction  between  the  chiral  limonene  and  the  decyl
chains. Therefore, the backbone of achiral PF10 can undergo
asymmetric  helical  stacking  under  the  influence  of  chiral  li-
monene environment during the assembly process.  As a res-
ult, the chirality of chiral limonene molecules is transferred to
achiral PF10 aggregates.

It is well known that azobenzene (Azo), as a photo-respons-
ive chromophore, possesses reversible trans-cis photoisomer-
ization properties.[40−44] Zhang and Fujiki et al. synthesized an
Azo-containing π-conjugated  polymer  poly[(9,9-di-n-octyl-
fluorenyl-2,7-diyl)-alt-4,4′-azobenzene]  (PF8Azo)  and  studied
its  chiral  supramolecular  assembly  behaviours  induced  by
chiral limonene (Fig. 4).[45] The CD results showed that chiral-
ity was successfully transferred from S- or R-limonene solvent
molecules to PF8Azo aggregates to generate optically active
PF8Azo aggregates.  Furthermore,  reversible  chiral  switching
was  achieved  by  alternating  light  irradiation  at  405  nm  and
546  nm,  due  to  the  switching  between  the trans-origin  ag-
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Fig. 2    The chemical structures of achiral polymers studied by Prof. Fujik’s group.
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Fig. 3    Possible mechanisms of helically ordered π-conjugated polymers stacked with chiral limonene molecules. (Reproduced
with permission from Refs. [32] and [39]; Copyright (2010) The Royal Society of Chemistry) (The online version is colorful.)
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gregation  and cis-origin  disaggregation  of PF8Azo in  the
mixed solvent.

The  unique  chemical  structures  of  achiral  polymers  play
an  important  role  in  the  limonene-induced  chirality  transfer
process.  We  first  synthesized  a  class  of  achiral  hyperbranc-
hed  polymers  (poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-bith-
iophene]s)  with  triphenylamine,  triphenylbenzene  and
spirobifluorene  as  different  branching  units,  and  prepared  a
series of chiral  and fluorescent nanoparticles using limonene
as  a  chiral  source.[46] In  these  systems,  the  structure  and  the
content  of  different  branching units  have a  significant  effect
on  the  induced  chirality  of  achiral  polymer  particles,  which
provides powerful supplements to the understanding of chir-
ality induction mechanism in π-conjugated polymer systems.
Meanwhile,  many other factors,  such as the concentration of
hyperbranched  polymers,  the  type  of  poor  solvent,  and  the
ratio  of  chiral  limonene  also  affected  the  chirality  of  achiral
polymer particles. The same factors were also found to affect
the  chirality  of  achiral  hyperbranched π-conjugated  poly-
mers-poly(9,9-di-n-octylfluorene)s  (HPF8s)  with  hexaoctyl-
truxene  (HT)  as  the  branching  unit  (Fig.  4).[47] Furthermore,
the element-dependent chiroptical inversion, as a novel phe-
nomenon in polymer systems, was observed in achiral π-con-
jugated  polymers  in  well-defined  limonene  induced  chiral
polymer  particles.[48] Then  achiral π-conjugated  polymers,
PF8,  poly(9,9-di-n-octylsila-fluorenyl-2,7-diyl)  (PSi8),  poly(9-
(1-octylnonyl)-9H-carbazole-2,7-diyl)  (PCz8),  and  its  copoly-
mers (P(F8-alt-Si8), P(F8-alt-Cz8),  and P(Si8-alt-Cz8) in
Fig.  4),  were  also  synthesized  with  C,  N  and  Si  atoms  as  the
key  factors  to  investigate  the  influence  of  atom  structures
(Fig.  4).  The  limonene  chirality  was  efficiently  transferred  to
PF8, PSi8 and P(F8-alt-PSi8) aggregates in mixed tersolvent,
but  not  to PCz8, P(F8-alt-PCz8),  and P(Si8-alt-PCz8) series.
The  chiroptical  inactivity  in  Cz8-containing  polymers  could
possibly  be  attributed  to  the  stronger  polarity  of  the  poly-
mers compared to chiral limonene, which results in weaker in-
teractions  between  limonene  and  polymer.  In  addition,  the
induced  chirality  in PF8 and PSi8 was  opposite  under  the
same assembly conditions. Through chemical simulation and

theoretical  calculations,  this  can  be  ascribed  to  the  opposite
Mulliken  charges  between  9-Si  in  Si8  and  9-C  in  F8  units,
which is −0.11 and +0.62, respectively. These studies provide
a better understanding of chirality induction, transfer and in-
version of π-conjugated polymers in aggregation states.

Generally,  the  tersolvent  system,  good  solvent/limonene
(chiral solvent)/poor solvent, is widely used in the chirality in-
duction  described  above.  However,  a  simplified  solvent  sys-
tem  will  avoid  the  interactions  between  the  building  blocks
and  other  solvent  molecules.  Further  simplifying  the  as-
sembled  components  of  supramolecular  system  in  achiral
polymers can facilitate the study of chirality induction mech-
anism. Recently, our group designed the assembled solvent in
achiral π-conjugated  polymer  systems  using  the  chiral  li-
monene  as  both  the  weak  and  the  chiral  solvents.  Inspired
from  the  special  physicochemical  properties  of PF8 and  the
advantages  of  the  simplest  single  solvent  system,  we  used
sol-gel  strategy  in  neat  limonene  towards  the  production  of
PF8 assemblies.[49] The PF8 assemblies  exhibited  defined
supramolecular  chirality  and  fluorescence  emissions,  as
shown in Fig. 5(a). The sol-gel process of PF8 was monitored
by  UV-Vis,  CD,  and  fluorescent  spectroscopies.  Combined
with self-assembly technology,  the sol-gel  transition was de-
signed  to  produce  supramolecular  chirality  in  confined  neat
nonracemic  limonene.  In  this  system,  supramolecular  chiral-
ity  of  achiral PF8 was  successfully  induced  by  neat  chiral  li-
monene  solvation  and  perfectly  memorized  for  a  long  time,
comparing favorably with that generated from chiral counter-
parts.[50] More importantly,  the chiral  assemblies  of PF8 with
obvious  right-  and  left-handedness  morphologies  were
clearly observed by AFM. In addition, the multilevel sensor for
enantioselective  recognition  toward  the  limonene  chirality
was first achieved based on the achiral π-conjugated polymer,
which may provide a new perspective for the design and con-
struction of novel responsive materials.

The  achiral π-conjugated  polymer  structures  can  be  flex-
ibly designed to study the structure-property relationships in
single  neat  chiral  limonene.  By  manipulating  the  polymer
structures,  the  stimulus-responsive  supramolecular  struc-
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Fig. 4    The chemical structures of achiral π-conjugated and side-chain polymers studied by our group.
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tures  and  its  unique  properties  are  facilely  controlled  in  a
single solvent system. For example, a novel optically inactive
π-conjugated  polyfluorene  derivative  (PF8C4, Fig.  5b)  bear-
ing  the  bulky  crown  ether  pendant  as  the  potassium  ion-
binding site was prepared using Suzuki coupling polymeriza-
tion,[51] followed  by  the  sol-gel  transition  process  in  a  single
solvent  system  as  described  above.  The  CD  results  indicated
that  polar  crown  ether  group  facilitated  the  supramolecular
assembly of achiral polyfluorene to some extent by aggregat-
ing in neat chiral limonene. The corresponding P- and M-hel-
ical  supramolecular  structures  were  obtained  and  observed
by TEM. Furthermore,  upon appending K+ ions to the helical
supramolecules, the optical activity of PF8C4 assemblies was
further enhanced owing to the complexation between the K+

ions and crown ether pendants.
Recently,  we  reported  another  study  about  structures-

property  relationship  where  the  parity  of  number  of  side
chain  carbons  can  affect  the  chirality  induction  of  achiral
polydialkylfluorenes  (PFs)  by  chiral  solvation.[52] A  series  of
disubstituted PFs bearing linear or branched alkyl side-chains
(PF5, PF6, PF7, PF8, PF9, PF10 and PF2/6 in Fig. 5) at the C9-
positions of the fluorine moieties were synthesized. After sol-
gel experiments, all PFs with linear side-chains can efficiently
assemble  into  supramolecular  chiral  gels  in  neat  limonene,
but  not  PFs  with  branched  side-chains  (PF2/6)  (Fig.  5c).[53]

Meanwhile, combinatory analysis of CD, UV-Vis,  and PL spec-
tra  confirmed  the  formation  of β-phase  conformers  for PF5,
PF7, PF8, PF9 and PF10,  and  another  phase  conformer  for
PF6.  The results demonstrated that odd-numbered PFs (PF5,
PF7, and PF9) formed β-phase conformation with a preferen-
tial  helicity  while  the  even-numbered  PFs  (PF8 and PF10)
formed  the  opposite  screw  sense.  Furthermore,  the  length
and odd-even number of side-chains also influence the disas-

sembling temperature for chiral PF gels. The results show that
minor  changes  in  the  length  of  alkyl  chains  in  achiral π-con-
jugated polymers can have a meaningful impact on its supra-
molecular  assembly  and  chirality  induction  behavior,  which
can provide a reference for the design of chiral π-conjugated
polymer  and  its  potential  applications,  such  as  circularly  po-
larized  light  emission,  chiral  sensors  and  chiroptical  switch
materials.[54−56]

Chiral solvation strategy has been well studied in achiral π-
conjugated  polymer  systems  as  described  above.  However,
the  extension  of  this  strategy  to  achiral  side-chain  polymer
systems  is  rarely  reported  but  very  meaningful.  Compared
with π-conjugated  polymers,  achiral  side-chain  polymers
have weaker inter-chain interactions and π-π stacking interac-
tions. Therefore, it is more difficult for achiral side-chain poly-
mers  to  form  ordered  supramolecular  helical  structures.  To
overcome  this  challenge,  we  currently  propose  that  the
photo-controllable  solvation  induction  of  supramolecular
chirality  can  be  achieved  using  achiral  side-chain  Azo-con-
taining  polymers.  It  is  well  known  that  Azo-polymers  are
promising  reversible  light-responsive  materials  due  to  their
unique  mechanical  and  physicochemical  properties.[57−60]

Generally, a coplanar trans-form Azo chromophore can be iso-
merized  to  bent-shaped cis-form  by  UV  light  irradiation  and
reversibly  transformed  back  to  its  original trans-state  by  vis-
ible light or heat treatment, accompanied by changes in mo-
lecular configuration, polarity and other properties.[61] For ex-
ample,  Wang et  al.  reported  the  construction  of  shape-
changeable colloidal spheres from amphiphilic Azo-polymers
through  gradual  hydrophobic  aggregation,  which  was
achieved  by  adding  the  selective  solvent  into  a  completely
dissolved  solution  of  the  polymer.  These  colloidal  spheres
showed  interesting  properties  such  as  photoinduced  shape

 
Fig. 5    Schematic illustration for the construction of supramolecular chirality in achiral π-conjugated polymers by single chiral limonene
solvent.  ((a)  Reproduced with permission from Ref.  [49];  Copyright (2016) American Chemical  Society;  (b) Reproduced with permisison
from Ref. [51]; Copyright (2017) Elsevier; (c) Reproduced with permission from Ref. [52]; Copyright (2018) The Royal Society of Chemistry)
(The online version is colorful.)
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deformation and photoinduced dichroism.[62−65] Yu et  al.  de-
veloped  light-modulated  actuators  with  Azo  moieties  as  the
light-responsive  unit.  Deformation  and  bending  phenomen-
on  of  the  crosslinked  Azo-polymer  films  has  been  observed
by  irradiation  under  UV  and  visible  light.[66−68] Furthermore,
three-dimensional  movements,  such  as  a  light-driven  plastic
motor, an inchworm walk, and a flexible robotic arm motion,
of  the  crosslinked  Azo-polymer  films  have  been  realized  us-
ing light as the only stimulus.[69] These Azo-polymer materials
can  convert  light  energy  directly  into  mechanical  work
without  external  forces,  which  is  ascribed  to  the  light-re-
sponsive  properties  caused  by  reversible trans-cis transition
of the Azo units.

Meanwhile,  the  induction  of  chirality  in  achiral  Azo-con-
taining  polymer  system  is  very  interesting  and  promising.
Asymmetric π-π stacking of Azo building blocks may occur in
the  aggregation  state  due  to  the  coplanar  property  of  the
trans-form.  Therefore,  supramolecular  chirality  induced  by
chiral  solvation  could  be  applied  to  Azo-containing  super-
structures.  Recently,  our group investigated the details  of  in-
duction of  supramolecular  chirality  in  achiral  side-chain Azo-
polymers by chiral limonene solvation. We systematically de-
signed  and  investigated  a  series  of  achiral  side-chain  Azo-
polymers  with  different  topological  structures,  such  as
linear,[70] cyclic[71] and  star[72] polymers,  where  linear  poly-
mers  were designed with different  spacer  lengths and push-
pull  electronic substituents (also shown in Fig.  4).[73] The res-
ults  of  CD  and  UV-Vis  spectra  suggested  that  the  well-as-
sembled  supramolecular  aggregates  were  successfully  pre-
pared  in  binary  solvent  and  chirality  was  successfully  trans-
ferred  from  nonracemic  limonene  to  these  achiral  Azo-poly-

mer aggregates. The supramolecular chirality obtained in ag-
gregation  can  be  ascribed  to  the  ordered  helical  stacking  of
Azo  building  blocks  on  the  side-chain  through  chiral  li-
monene  solvation  (Fig.  6).  Meanwhile,  internal  structures  of
Azo-polymers and external stimuli have distinctive influences
on  the  induction  and  regulation  of  supramolecular  chirality.
This  chirality  can  be  modulated  by  UV  light  irradiation  and
heating-assisted  reorganization  process,  which  is  due  to  the
reversible trans-cis isomerization  of  the  Azo unit.  The  revers-
ible  chiral-achiral  switching  based  on  achiral  side-chain  Azo-
polymers  was  successfully  achieved,  which  offers  a  new  ap-
proach  for  the  production  of  chiroptical  materials.  Further-
more, the preferred supramolecular chirality was successfully
induced in assembled linear Azo polymers in film using solely
neat  limonene  vapor.[74] The  supramolecular  chirality  can  be
erased  temporarily  after  heat  treatment  and  recovered  after
cooling down to room temperature.  A chiroptical  switch can
be  easily  achieved  by  alternately  changing  the  temperature.
The  supramolecular  chiral  films  also  showed  good  chiral
memory  behavior  for  extended  periods  of  time  after  remov-
ing the chiral sources.

Chiral Gelator
Low  molecular  weight  organic  molecules  can  immobilize
solvents and self-assemble into ordered nanostructures, making
supramolecular  gelation  a  very  simple  strategy  to  construct
nanostructures. Using an asymmetric gelator with a chiral factor,
the  strategy  is  further  developed  to  achieve  chirality  transfer
from  the  gelator  to  chiral  assemblies via noncovalent
interactions  including π-π stacking,  hydrogen  bonding  and
donor-acceptor  interactions.[75−77] The  chiral  gelation  strategy,
as a supramolecular cooperative assembly platform, provides a

 
Fig.  6    Schematic  illustration  of  the  supramolecular  helical  structure  of  achiral  side-chain  Azo-polymers  induced  by  chiral
limonene and construction  of  the  chiroptical  switch.  (Reproduced with  permission  from Ref.  [70];  Copyright  (2015)  The  Royal
Society of Chemistry) (The online version is colorful.)
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new  approach  for  constructing  well-defined  chiral  assemb-
lies  with  supramolecular  structures.  Significant  success  in
supramolecular systems has been achieved by Liu’s group by
taking  advantage  of  chiral  gelators.  For  example,  they
designed  and  developed  a  universal  chiral  gelator, N,N′-
bis(octadecyl)-L-Boc-glutamic diamide (LBG-18), that can co-gel
most  achiral  organic  compounds  into  supramolecular  chiral
assemblies.[78] The  hydrophobic  alkyl  chains  anchored  on  this
gelator  allows  the  chirality  transfer  from  chiral  gel  matrix  to
achiral  organic  compounds.  However,  chirality  induction  and
transfer by chiral gelation are usually limited between two small
molecules.

Recently,  our  group  and  Prof.  Liu  mixed  the  same  chiral
gelator  with  achiral  main-chain  polymer PSi8,  and  further
found  that  both  the  collaborative  gelation  and  the  chirality
transfer  from  chiral  gelators  to  achiral  polymers  occurred
(Fig.  7a).[79] In  this  system,  supramolecular  chirality  of  poly-
mers was obtained via the alkyl chain entanglements or inter-
actions  between  the  achiral  polymer  and  gelator  molecules.
The helicity of the achiral polymer can be easily controlled by
the  molecular  chirality  of  the  gelator.  Furthermore,  the  heli-
city  of  the  supramolecular  assemblies  can  be  memorized
even  after  the  complete  removal  of  gelator  molecules.  Im-
portantly, CPL was emitted by the supramolecular assemblies
because  of  the π-conjugated  structures  of  fluorescent  main-
chain  polymers,  which  originally  inhere  in  the  intrinsic  chiral
polymers.  This  work  indicates  that  chiral  gelation is  a  simple
strategy  to  regulate  achiral  polymers  into  supramolecular
chiral assemblies.

Inspired by this work, we further attempted to expand the

application  of  chiral  gelators  to  achiral  side-chain  Azo-poly-
mers.[80] By  manipulating  the  gelation  of  the  mixed  achiral
side-chain Azo-polymers and chiral gelator, the supramolecu-
lar assemblies were easily and controllably constructed in situ
with  designable  helical  superstructures  and  supramolecular
chirality (Fig. 7b). The induced CD of Azo-polymers can still be
found in the xerogel  state after  complete removal  of  the co-
solvent.  Chiral  field  created  by  the  assembled  fibers  of  the
mixed gel endowed the achiral Azo-polymer with helical con-
formation,  which  confirmed  the  successful  chirality  transfer
from the gelator to the achiral polymer. Meanwhile, the con-
structed supramolecular chirality of the achiral Azo-polymers
entirely  followed  the  chirality  of  the  gelator.  Further  study
confirmed  that  the  type  of  solvent  and  the  length  of  alkyl
chain  play  an  important  role  in  the  construction  of  supra-
molecular chirality of achiral Azo-polymers. The supramolecu-
lar  helical  structures  of  achiral  Azo-polymers  cannot  be  in-
duced  by  chiral  gelators  in  the  presence  of  the  cosolvent,
however,  chirality  induction  and  transfer  processes  occurred
after  the  solvent  is  removed.  Also,  the  gelator  LBG-18  with
longer  alkyl  chain  is  capable  of  transferring  the  chirality  to
achiral  Azo-polymers  but  not  LBGs  with  shorter  alkyl  chains.
More importantly, a reversible chiroptical switch was success-
fully  fabricated  based  on  the  reversible  Azo trans-cis trans-
ition.  These  studies  present  a  very  accessible  induction
strategy  guided  by  chiral  gelator  for  achiral  main-chain  and
side-chain polymers.

Circularly Polarized Light
CPL  has  been  considered  as  one  of  the  likely  sources  for  the
excess  of  chiral  biological  macromolecules  as  well  as  the  sin-

 
Fig.  7    Illustration  of  chirality  transfer  from  chiral  gelator  to  achiral  (a)  main-chain  and  (b)  side-chain  polymers,  and  the  corresponding  CD
spectra and SEM images. ((a) Reproduced with permission from Ref. [79]; Copyright (2016) The Royal Society of Chemistry; (b) Reproduced with
permission from Ref. [80]; Copyright (2017) The Royal Society of Chemistry) (The online version is colorful.)
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gle  handed  homochirality  on  earth  and  throughout  the
universe.  The  origins  of  the  initial  chirality  may  be  ascribed  to
the  asymmetric  physical  force  from  CPL  during  the  star
formation.[81] Furthermore, the circular and elliptical polarization
phenomenon of sunlight has been observed in the nature due
to  the  scattering  of  dusts  and  droplets.  In  the  laboratory,  the
right-CPL (r-CPL)  and left-CPL (l-CPL)  can be easily  obtained by
using Glan-Taylor prism and 1/4 quartz waveplate (45o or 135o).
Essentially,  the  circular  polarization  of  light  is  the  rotation  of
electric  field  wave  in  a  plane  perpendicular  to  its  direction  of
propagation while maintaining a constant amplitude over time.
Among the different  methods for  constructing supramolecular
chirality, CPL is a massless and endless electromagnetic source.
More  importantly,  CPL  provides  additional  spatiotemporal
control  without limitation for  the asymmetric  properties of  the
polymers.

Actually,  Nikolova’s  group demonstrated the first  example
of CPL-induced chirality in achiral Azo-polymers. In 1997, they
reported that when the achiral liquid crystalline Azo-polymer
films  were  illuminated  by  one-handed  CPL  pumping,  large
circular  birefringence and circular  dichroism were clearly ob-
served.[82] In  addition,  the sign of  circular  optical  property  of
the achiral polymer films was determined by the handedness
of CPL. Since then, CPL has become a well-accepted tool to in-
duce the chirality of polymers. Further successful and extens-
ive studies on the CPL-driven chirality induction of Azo-poly-
mers  were  performed  by  Natansohn et  al.,[83] Kim et  al.,[84]

Takezoe et  al.,[85] Zou et  al.[86] and  Angiolini et  al.[87] Further-
more,  chirality  has  also  been  induced  by  using  CPL,  and  ex-
perimentally  and theoretically  studied in  several  optically  in-
active  polymers,[88] such  as  vinylpolymers,  polydiacetylene,
polyisocyanate and polyfluorene. For example, our group and
Prof.  Fujiki  demonstrated  for  the  first  time  CPL-modulated
chiroptical generation, racemisation, inversion, switching and
retention of μm-sized PF8T2 (Fig. 2) and PF8Azo (Fig. 4) poly-
mer  particles  dispersed in  organic  solvents.[88,89] These  chiral
polymer  structures  could  be  effectively  controlled  by  mixed
solvents  and  CPL,  using  different  variables  such  as  the
wavelength,  irradiation  time  and  ellipticity.  In  addition,
Nakano et al. reported that achiral polyfluorenes can be optic-
ally  active  by  creating  macromolecular  helical  conformation
in the backbone using CPL irradiation.[29,90] A  mechanism in-
volving  a  twisted-coplanar  transition  (TCT)  of  a  fluorene-
fluorene  diad  junction  has  been  proposed.  The  basis  of  this
theory  is  that  the  twisted  and  coplanar  conformations  are
most  stable  in  the  ground  state  and  in  the  excited  state,  re-
spectively.[91] However,  it  should  be  noted  that  the  chirality
of  these  polyfluorene  systems  is  attributed  to  the  macro-
molecular helical structure of the polymer backbone, which is
different  from  the  supramolecular  chirality  of  achiral  poly-
fluorenes induced by chiral limonene.[49]

Most  researchers  concur  that  CPL  handedness  is  the  de-
termining  factor  in  the  resulting  polymeric  chirality.  Revers-
ible helical  switching of  the one-handed structures in achiral
polymers can be achieved by alternating the pumping of CPL
with  opposite  handedness  to  the  samples.  However,  the  ef-
fect  of  CPL  handedness,  irradiation  wavelength,  and  irradi-
ation  time  on  the  chirality  induction  of  polymers  have  not
been systematically studied. The investigation of the depend-
ence  of  photogeneration,  photoresolution  and  photoswit-

ching  modes  on  the  CPL  wavelength  is  of  great  significance
for  studying  the  mechanism  of  chirality  induction  of  achiral
polymers.

Recently, our group and Fujiki et al. demonstrated that the
CPL wavelength (313 nm and 365/405/436 nm) is the determ-
ining  factor  for  photogeneration,  photoresolution  and  pho-
toswitching of the achiral Azo-polymers, regardless of wheth-
er the handedness of the CPL source is the same.[92] As shown
in Fig.  8(a),  a  completely  symmetrical  bisignate  Cotton band
at the π-π* transitions of Azo chromophores was observed as
the intense exciton coupling effect in CD spectra upon l- and
r-CPL (365 nm) irradiation. By irradiating with 365 nm l-CPL, a
negative  sign  at  the  first  Cotton  band  and  a  positive  sign  at
the second Cotton band appeared.  Interestingly,  the  CD sig-
nals  were completely  reversed when the Azo-polymers  were
irradiated  by  313  nm l-CPL,  and  a  positive  sign  at  the  first
Cotton band and a negative sign at the second Cotton band
were  observed.  (Fig.  8b).  The  results  demonstrated  that  the
supramolecular  chiral  structures  with  opposite  handedness
may  be  constructed  in  achiral  Azo-polymers  after  irradiation
with CPL of different wavelengths. Chirality induction, switch-
ing,  memory  and  mechanism  of  chiroptical  generation  were
also studied theoretically. Theoretical calculations and simula-
tions with Zerner’s Intermediate Neglect of Differential Over-
lap (ZINDO) model were used to verify the origin of the bisig-
nate  Cotton  bands  of  the  induced  chirality  in  achiral  Azo-
polymers  (Fig.  8c).  The  results  showed  that  the  most  favor-
able assorted structures of Azo building blocks tend to adopt
chirally  tilted π-π stacking motifs,  which is  believed to be re-
sponsible  for  the  bisignate  Cotton  CD  bands  that  were  ob-
served  experimentally.  In  addition,  the  opposite  Cotton
bands  at  the  long  axis  (~400  nm)  and  short  axis  (~300  nm)
may be the origin of the dependence of chiroptical inversion
on  CPL  handedness.  These  results  describe  a  novel  and  effi-
cient approach for the CPL-controlled chirality in achiral poly-
mers which hold enormous potential in the mirror symmetry
breaking field.

In addition to achiral side-chain polymers, Zhang and Fujiki
et  al.  also  demonstrated  the  first  CPL-induced  mirror  sym-
metry breaking in achiral main-chain PF8Azo (Fig. 4) polymer
particles  dispersed  in  optofluidic  organic  solvents.[88] These
chiroptical  modes of  generation,  racemisation,  inversion and
retention  could  be  effectively  controlled  by  the  molecular
structure  of  the  poor  solvents  (non-branched  and  branched
alcohols) and the wavelength, pumping time and ellipticity of
the  CPL.  Compared  with  other  chirality  inductions,  CPL  is  a
more efficient chiral  physical source to be used in the supra-
molecular asymmetric assembly of achiral polymers due to its
unique  advantage  of  pure  photochemical  process,  control-
lable physical quantities and lower chemical cost.

Chiral Dopant
The  chiral  doping  strategy  is  a  general  method  in  chirality
induction  because  chiral  dopant  can  cooperatively  self-
assemble  with  achiral  building  blocks  to  form  supramolecular
assemblies.[93−95] For  instance,  Yu et  al. systematically  studied
the  hierarchical  self-assembly  process  of  Azo-containing  liquid
crystalline  block  copolymers  doped  with  chiral  tartaric  acid.[21]

Chirality  from  the  chiral  dopants  was  transferred  to  the
supramolecular complex and induced the aggregation chirality
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of the achiral Azo block copolymers through hydrogen bonding
between  chiral  tartaric  acid,  the  poly(ethylene  oxide)  (PEO)
segments  and  the  Azo  segments.  Watkins et  al.  described  the
formation  of  helical  phases  in  an  achiral  PEO-based  block
copolymer  system  by  the  straightforward  use  of  chiral  dopant
driven  self-assembly.[96] Hydrogen  bonding  interactions  bet-
ween chiral  tartaric  acid  and PEO blocks  not  only  enhance the
phase  segregation  strength  of  the  block  copolymers  but  also
transfer  the  chiral  information  from  the  dopant  to  the  achiral
backbone  to  induce  the  conformational  chirality.  To  enrich
chiral doping proposal, we prepared an optically active cofacial
π-π phthalocyanine  stacked  supramolecular  chiral  nanofibers
induced  by  equimolar  amounts  of  inexpensive  chiral  diamine
molecular  sources.[97] Through  acid-base  interaction,  achiral
phthalocyanine  can  cooperatively  self-assemble  with  chiral
diamine  molecules  in  an  asymmetric  manner.  Specially,
supramolecular chiral structures can be controlled by regulating
the  structures  and  molar  ratio  of  the  amine  molecules,  the
volume  ratio  of  poor/good  cosolvents,  the  cavity  metal  of

phthalocyanine  and  the  addition  order  of  the  amines.
Meanwhile, the chirality of nanofibers was persistent even after
the addition of the opposite antipode diamine or the removal of
pre-added chiral amine.

Recently,  we  have  adopted  chiral  doping  strategy  during
the  polymerization  process  to  prepare  monodisperse  Azo-
containing  micron-sized  optically  active  polymer  spheres
with  supramolecular  chirality  for  the  first  time  (Fig.  9).[98] By
adding  chiral  octanol  as  an  asymmetric  source,  achiral  Azo-
based monomers can self-assemble in  situ into microspheres
with supramolecular  chirality  in  the side-chains  during helix-
sense-selective  dispersion  polymerization  (HSSDP),  which
opens a new pathway for the controlled assembly of optically
active polymer microspheres. The supramolecular chirality of
polymer  microspheres  was  verified  to  be  derived  from π-π
stacking of achiral trans-Azo units in which the Azo units ad-
opt a helical structure in the polymer side-chain. Interestingly,
chirality  of  polymer  microspheres  can  be  perfectly  memor-
ized  in  dispersions  for  more  than  two  months.  Furthermore,

 
Fig. 8    CD and UV-Vis spectra of Azo-polymers exposed to (a) 365 nm and (b) 313 nm l-CPL and r-CPL; (c) Six slightly twisted trans-Azo units and
simulated CD and UV-Vis spectra of the model.  (Reproduced with permission from Ref.  [92];  Copyright (2017) American Chemical Society) (The
online version is colorful.)

 
Fig.  9    A schematic  illustration of  the preparation of  Azo-based optically  active polymer spheres by HSSDP.
(Reproduced with permission from Ref. [98]; Copyright (2020) The Royal Society of Chemistry).
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an appropriate content of DVB crosslinker introduced into the
Azo polymer chains did not destroy the supramolecular helic-
al structures formed by the achiral side-chain trans-Azo units.
Actually, the cross-linked network improved UV-radiation res-
istance  of  the  optically  active  polymer  spheres  as  compared
with their non-crosslinked counterparts.

Chiral Scaffold/Template
In  addition  to  chirality  induction  strategies  described  above,
chiral  biological  and  synthetic  molecules  can  be  used  as
scaffolds  or  templates  to  construct  supramolecular  chiral
architectures  from  achiral  or  optically  inactive  polymers.  The
chiral  scaffold/template  induction  has  been  proven  to  be  a
simple  and  effective  method  for  producing  supramolecular
chirality  from  achiral  substances.  It  should  be  noted  that  the
chiral scaffold strategy is based on the non-covalent interactions
between the host and the guest, which is a temporary platform
for  constructing  a  chiral  composite  structure.  Thus  chiral
scaffold can be removed artificially after the induction process is
completed,  however,  chiral  template is  generally difficult  to be
removed after  chirality  induction due to  the strong interaction
between  the  host  and  guest  molecules.  Therefore,  chiral
template is a long-lived platform.[99]

Many natural chiral/helical compounds can be used as chir-
al  templates.  For  examples,  schizophyllan  adopts  a  right-
handed  triple  helical  structure  in  water  but  a  single  random
coil  conformation  in  dimethyl  sulfoxide.  Shinkai et  al.  repor-
ted  that  neutral  one-dimensional  schizophyllan  can  be  used
as  hosts  and  chiral  templates  to  induce  the  self-assembly  of
water-soluble polythiophene guests into supramolecular chir-
al insulated molecular wires.[100−102] Furthermore, cellulose, as
the most abundant polysaccharide on earth, has been repor-
ted  as  a  chiral  scaffold  capable  of  transferring  its  chirality  to
achiral/non-helical  semi-flexible  non-charged  oligo-  and
poly(dialky-fluorene)s  without  other  chiral  catalysts.[103] Re-
cently,  it  was found that a DNA-based origami supramolecu-
lar  polymer  can  act  as  a  chiral  template  to  dynamically  con-
trol the helical superstructure of gold nanorods.[104] The chir-
ality induction of natural chiral templates has scientific signi-
ficance in life sciences, especially in the study of the origin of
chirality.

Chiral  polysilane  is  an  ideal  photodegradable  chiral  scaf-
fold for designing chiral scaffold-achiral polymer systems, due
to  its  quick  and  complete  decomposition  upon  313  nm  UV
light  irradiation.  Fujiki et  al.  reported,  for  the  first  time,  that
CPL-active  and  CD-active  achiral PF8, PF8DBT and PF8T2
(the structures are shown in Fig. 10) can be prepared through

induction  using  photoscissorable  helical  scaffolds  of  non-
charged  poly(n-hexyl-(S)-2-methylbutylsiane)  (PSi-S)  and
poly(n-hexyl-(R)-2-methylbutylsiane)  (PSi-R).[105−107] At  the
same time, achiral polyfluorenes exhibits strong photochem-
ical stability after the chirality induction process. After remov-
ing  the  chiral  PSi  scaffolds,  the  resulting π-conjugated  poly-
mers remain CPL- and CD-active. The significant difference in
the photodegradability  of  chiral  PSi  and polyfluorenes  is  the
key  to  designing  the  complex  system.  Recently,  Zhang  and
Fujiki et  al.  effectively  combined  the  scaffold-induced  chiral-
ity  and  the  photoisomerization  of  Azo  units  to  construct  a
light-controlled reversible  chiroptical  switch.[108] The left  and
right  helicities  of PF8Azo (Fig.  10)  aggregates  were  success-
fully controlled with an enantiomeric pair of rigid rod-like hel-
ical PSi-S and PSi-R,  respectively.  The chiroptical  behavior of
the hetero-aggregates was modulated by the trans-cis trans-
formation  of  the  photoresponsive  Azo  units  (Fig.  11).
Moreover,  the  optically  active PF8Azo homo-aggregates
were  produced  by  complete  photoscissoring  of PSi at  313
nm, which could be assigned to the Siσ-Siσ* transitions of PSi-
S and PSi-R.

APPLICATIONS OF INDUCED CHIRALITY
Supramolecular  chirality  has  received  much  attention  due  to
potential  applications  in  chiral  recognition  and  sensing,  chiral
switching,  circularly  polarized  light,  asymmetric  catalysis  and
biological  fields.  For  example,  polyfluorenes  have  rigid  planar
structure,  conferring higher optical  properties,  thermochemical
stability,  fluorescence  quantum  efficiency  and  wider  energy
level band gap.[109] Generally, polyfluorenes express CPL in both
dissolved  and  aggregated  state,  which  is  usually  derived  from
the  intra-chain  helical  structures  or  inter-chain π-π helical
stacking. Polyfluorenes with supramolecular chirality are one of
the  widely  studied  CPL  materials.  The  CPL  properties  of
polyfluorenes are influenced by their chemical structure, phase
transition  and  supramolecular  assembly  behavior.  In  addition,
supramolecular  chirality  can  also  be  induced  in  achiral  Azo-
polymers  through asymmetric  stacking of  Azo building blocks.
The completely pure, by-product-free isomerization process has
led to the rapid development of supramolecular chirality of Azo-
polymers  with  a  broad  range  of  attractive  applications.[110]

Based on our results, we will  summarize several applications of
supramolecular  chirality  and  provide  an  outlook  on  their
prospects.

Chiral Recognition and Sensing
Chiral  recognition  and  sensing  are  mainly  based  on  the  host-
guest  interactions,  which  have  very  important  applications  in
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Fig. 10    Chemical structures of chiral polysilane scaffolds, non-helical polyfluorenes and derivatives.
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supramolecular  chemistry.  Chiral  recognition  and  sensing  in
supramolecular  systems  can  reflect  the  interaction  between
supramolecular  chiral  assemblies and chiral  molecules.[6] When
a  chiral  host  compound  interacts  with  a  pair  of  enantiomeric
guests,  the  intermolecular  chiral  interaction  between  the  host
and  each  of  the  enantiomer  is  different,  due  to  the  different
relative orientations of the interacting groups.[4] As a result, their
different  physical  and  chemical  properties  can  be  easily
monitored  by  spectroscopic  and  other  methods.  Chiral
recognition  and  sensing  can  be  more  easily  achieved  at  the
supramolecular level than that at molecular level. Furthermore,
since  supramolecular  chirality  can  be  constructed  by  chiral
components, combinations of chiral and achiral components, or
even completely achiral components, many achiral components
can be used as chiral sensors to detect chirality.

As  described  above,  supramolecular  chirality  can  be  suc-
cessfully  constructed  from  achiral PF8 (Fig.  2)  aggregates  in
nonracemic  limonene  by  cooling PF8 solution  at  relatively
low temperatures. The achiral PF8 film also has chiral sensing
ability  to  chiral  limonene  vapors.[49] As  presented  in Fig.  12,
achiral PF8 films  were  sensitive  to  chiral  limonene vapors  as
shown by the corresponding peaks near 390 nm for both R-li-
monene  (negative  signal)  and S-limonene  (positive  signal).
This is the first example of chiral sensing film constructed us-
ing achiral π-conjugated polymers, presenting thermal stabil-
ity  as  well  as  good  optical  properties.  Furthermore,  supra-
molecular chirality can also be constructed in the achiral side-
chain  Azo-polymer  films  through  induction  by  limonene  va-
pors.[74] Therefore, achiral Azo-polymer films can also be used
as chiral  sensors to detect the enantiomers of  nonracemic li-
monene.  These  results  will  facilitate  future  research  on  the
mechanism of chirality induction and transfer in achiral poly-
mer  systems  and  expand  potential  application  in  chiral  film
materials.

Chiroptical Switch
Since  supramolecular  chirality  is  usually  constructed  from
chiral  or  achiral  building  blocks  by  weak  noncovalent
interactions,  the  coupling  interaction  between  two  building
blocks  is  weaker  and  more  changeable.  Therefore,  the
dynamic  supramolecular  self-assembly  process  can  be
regulated by varying the temperature and the concentration
of  solutions,  or  the  polarity  of  medium.  The  supramolecular
chirality  can  be  switched  between  “on”  and  “off”  states  or
even  inverted  to  each  other  under  external  stimuli  by  a
reorganization process.[2] Supramolecular chirality constructed
from achiral polymers are dynamic and can be easily controlled
using  external  environment.  This  provides  greater  flexibility  in
the design of chiroptical switches.

Liu et al.  reported chiroptical switches composed of supra-
molecular  assemblies  that  are  formed  using  chiral  gelators,
which  have  been  reviewed  recently.[111] We  also  reported
many  examples  of  constructing  chiroptical  switches  from

 
Fig. 11    Schematic illustration of chiral assembly of achiral PF8Azo induced by chiral polysilane scaffold. (Reproduced with permission
from Ref. [108]; Copyright (2019) The Royal Society of Chemistry).

 
Fig. 12    Schematic illustration of chiral  sensing of achiral  PF8 films.
(Reproduced  with  permission  from  Ref.  [49];  Copyright  (2016)
American Chemical Society) (The online version is colorful.)
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achiral main-chain and side-chain polymers. Taking the achir-
al  main-chain PF8Azo (Fig.  4)  as  an  example,  we  reported
that chirality of achiral PF8Azo aggregates can be induced by
chiral  limonene  solvation.[45] This  chirality  can  be  erased  by
405 nm light irradiation and recovered by 546 nm light irradi-
ation.  The  results  indicated  that  the  aggregation-and-disag-
gregation  characteristic  of PF8Azo can  be  reversibly  con-
trolled  by  the trans-cis photoisomerizable  Azo  units  in  the
presence  of  limonene  molecules.  This  phenomenon  origin-
ated  from  the  switching  between  the trans-origin  aggrega-
tion and cis-form disaggregation of PF8Azo in the mixed ter-
solvent.  The  reversible  chiroptical  switch  can  be  repeated
more  than  5  times  by  alternating  the  wavelengths  during
photoirradiation  (Fig.  13a).  Chiroptical  switches  can  also  be
constructed by achiral side-chain polymers, as seen in achiral
Azo-polymer (Fig. 8) aggregates. We have demonstrated that
a selected CPL can be used as a control for the construction of
chiroptical  switch,  as  demonstrated  above.[92] A  chiroptical
switch of Azo-polymer aggregates in optofluidic medium can
be constructed by two different  wavelengths  of  CPL sources
(r/l-CPL  313  nm and r/l-CPL  436  nm)  with  the  same handed-
ness. The CD value of the Azo-polymer aggregates was posit-
ive  upon 313 nm r-CPL  irradiation,  and changed to  negative
upon 436 nm r-CPL  irradiation.  This  dynamic  process  can be
repeated  many  times,  demonstrating  the  high  resistance  of
the chiroptical switch (Fig. 13b).

Circularly Polarized Luminescence
Circularly  polarized  luminescence  is  a  luminescence  pheno-

menon  that  provides  differential  emission  intensity  of  left  and
right  circularly  polarized  light,  thereby  providing  chirality  and
emission  information  on  the  excited  state  properties  of  the
supramolecular  chiral  systems.[112] The  differential  emission  of
right  and  left  circularly  polarized  light  can  be  recorded  by  a
spectroscopy  instrument  named  circularly  polarized
luminescence  spectrum.  The  circularly  polarized  luminescence
spectrum  reflects  the  differential  emission;  thus,  it  always
accompanied  with  an  emission  spectrum.[113] In  recent  years,
circularly polarized luminescence-active materials have received
increasing  attention  due  to  their  potential  applications  in
sensors  as  well  as  display  devices.[112] Owing  to  the
development  of  supramolecular  self-assembly,  supramolecules
have  the  potential  to  self-assemble  into  chiral  assemblies  with
circularly  polarized  luminescence  activity.  Furthermore,  the
dissymmetry factor glum can be enhanced and easily controlled
by  adjusting  the  parameters  of  supramolecular  self-assembly
process.  Through  supramolecular  self-assembly,  our  group  has
demonstrated  that  achiral  polymers  can  be  endowed  with
circularly  polarized  luminescence  activity  through  chirality
induction.

If  the  circularly  polarized  luminescence-sign  or  chiroptical
switching  and  helicity  of  chiral  luminescent  materials  in  the
photoexcited  state  can  be  effectively  controlled,  further  in-
sightful  design  and  application  of  circularly  polarized  lumin-
escence-active  materials  are  possible.  Actually,  it  is  challen-
ging  to  facilely  and  controllably  prepare  circularly  polarized
luminescence-active  supramolecules  with  a  high  dissym-
metry  ratio, glum,  from  entirely  achiral  polymer  systems.  We

 
Fig.  13    Schematic  illustration  of  chiroptical  switches  in  achiral  (a)  main-chain PF8Azo (Reproduced  with  permission  from  Ref.  [45];
Copyright (2011) American Chemical Society) and (b) side-chain Azo-polymer aggregates.  (Reproduced with permission from Ref.  [92];
Copyright (2017) American Chemical Society) (The online version is colorful.)
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found that PF8 supramolecular aggregates in neat limonene
solvents  revealed  relatively  intense,  vibronic  circularly  polar-
ized luminescence bands due to the formation of β-phase.[49]

Besides,  apparent  circularly  polarized  luminescence  signs
from PF8 film  were  opposite  to  those  from  supramolecular
aggregates in gel state, despite the identical chirality of the li-
monene used (Fig. 14). Furthermore, an exciton couplet bisig-
nate  signals  appeared  in  circularly  polarized  luminescence
spectra, indicating the possibility of photoexcited state chiral-
ity.  We  assumed  that  circularly  polarized  luminescence-sign
inversion is a common characteristic, that depends on homo-
geneity of the solution, gel, and condensed film states. These
results may provide a new way for designing and controlling
circularly  polarized  luminescence-active π-conjugated  poly-
mer materials.

CHALLENGES AND OUTLOOK

A  number  of  excellent  research  studies  and  remarkable  achie-
vements  have  been  made  in  supramolecular  chiral  chemistry.
However, there are still existing challenges and opportunities in
this field:

(1) The construction of supramolecular chirality induced by
chiral  solvent  described  above  requires  first  the  synthesis  of
the  corresponding  polymers,  followed  by  self-assembly  un-
der  selective  conditions,  regardless  of  achiral  main-chain π-
conjugated polymers or side-chain Azo-polymers. This means
that  the  construction  of  supramolecular  chiral  structures  re-
quire at least two steps: synthesizing the corresponding poly-
mers followed by performing the assembly in an asymmetric
solvent  environment.  Furthermore,  many  supramolecular
chiral  aggregates prepared by this  method are performed at
a  very  low  solid  content  (even  below  0.1  wt%),  which  have
poor stability and are easy to precipitate in the mixed solvent
systems. Hence it is difficult to prepare them in large quantit-
ies.  If  there  is  a  one-step  strategy  to  construct  the  supra-

molecular  chiral  assembly  during  polymerization  would  al-
low the process to be simpler and more economical.

Recently, we demonstrated for the first time the polymeriz-
ation-induced  chiral  self-assembly  (PICSA)  strategy,[114] as
presented  in Fig.  15.  Hierarchical  supramolecular  chiral  Azo-
polymer assemblies were obtained at a high solid content (10
wt%)  using PISA strategy in  association with  reversible  addi-
tion-fragmentation  chain  transfer  (RAFT)-mediated  disper-
sion  polymerization.  PICSA  allows  the  controlled  self-as-
sembly of Azo-polymers in a single solvent during polymeriz-
ation  with  simultaneous  liquid  crystalline  ordering,  supra-
molecular  interaction  and  self-assembly.  During  PICSA  pro-
cess, solvophilic poly(methacrylic acid) macromolecular chain
transfer  agent  (PMAA  macro-CTA)  is  used  to  mediate  the
polymerization of soluble monomer in a selective solvent. As
the  polymerization  proceeds,  the  solubility  of  Azo  polymer
chains  decreases,  driving  the in  situ self-assembly  of  am-
phiphilic  Azo-polymers  into  different  morphological  phases,
such  as  spheres,  worms,  fibers,  lamellae  and  vesicles.  Modu-
lating solvophobic chiral side-chain Azo blocks, supramolecu-
lar  chiral  assemblies can be obtained in a controlled manner
with  helical  stacking  taking  place  spontaneously  in  the  Azo
semectic  layers.  Furthermore,  the  supramolecular  chiral  as-
sembly  becomes  more  stable  due  to  its  amphiphilic  nature.
More interestingly,  the morphological transition of Azo-poly-
mer  assemblies  has  a  significant  effect  on the induction and
expression  of  supramolecular  chirality,  and  the  assemblies
with  fibrillar  morphology  have  the  most  helical  ordered  su-
perstructure  compared  with  other  counterparts.  In  addition
to the side-chain Azo-polymer assemblies,  Wan et  al.[115] and
O’Reilly et  al.[116] recently  reported  that  PICSA  strategy  can
also  be  employed  to  prepare  main-chain  helical  assemblies,
such  as  poly(phenylacetylene)s  and  poly(aryl  isocyanide)s.
Compared with  traditional  methods  for  preparation of  these
supramolecular  chiral  assemblies,  PICSA  strategy  can  effect-
ively construct supramolecular assemblies at high concentra-

 
Fig. 14    CPL and PL spectra of (a) PF8 aggregates and (b) corresponding spin-cast films. (Reproduced with permission from Ref. [49];
Copyright (2016) American Chemical Society) (The online version is colorful.)
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tion  with  controlled  hierarchical  morphologies  and  further
functionalize materials with manipulatable chirality.

(2)  In  the  induction  method  described  above,  the  indis-
pensable role of chiral sources in the process of supramolecu-
lar assembly, and even how many traces of chiral sources ac-
tually work, still remain unclear in chirality induction process.
In  the  future,  through  rational  structural  design  of  the  tar-
geted achiral polymers, a chiral seed may be covalently linked
to  achiral  polymer  chains,  for  example  at  a  fixed  position  in
the  polymer  backbone,  to  control  the  cooperative  assembly
as well as supramolecular chiral superstructures. This method
will  overcome  the  inherent  dependence  of  the  traditional
chirality  induction  methods  on  external  chiral  sources,  such
as  chiral  solvents,  chiral  gelators  and  circularly  polarized
light, etc.

(3) Currently, supramolecular chirality constructed in achir-
al polymer systems is mainly based on the weak noncovalent
interactions,  which  is  easily  destroyed  by  external  stimuli,
such  as  light,  heat  or  solvent.  The  destroyed  chiral  structure
cannot be recovered without the pre-chiral source. This short-
coming greatly limits their applications in new functional ma-
terials.  Therefore,  precise modulation of  the network topolo-
gies  and  mechanical  properties  in  achiral  polymers  may  fur-
ther  expand  the  potential  applications  of  supramolecular
chirality.  For  example,  we  are  managing  to  design  a  micro-
system  from  the  cross-linking  achiral  polymers  in  which  the
induced chirality of the nanostructure will be stored perman-
ently  and  capable  of  self-recovery  when  exposed  to  the  ex-
ternal  stimulus.  This  methodology  will  open  a  new  route  to-
wards  the  formation  of  chiral  self-recovery  based  materials
from absolutely achiral polymers.

(4)  In  nature,  molecular-scale  motion  can  power  macro-
scopic mechanical motion in highly complex processes. Biolo-

gical  systems  based  on  helical  motion  are  common,  such  as
coiled tendrils and snail's shell.  The supramolecular chiral su-
perstructures  constructed  by  chirality  induction  in  achiral
polymers  are  usually  microscopic.  Based  on  the  general
concept that such microscopic helical deformations may sim-
ilarly  occur  in  artificial  systems,  the  construction  of  a  macro-
scopic helix to mimic the chiral bias in nature is an important
topic to be further explored. This means that molecular chiral-
ity would be translated across microscopic scale lengths into
macroscopic helix,  which is  of  great significance for  the con-
struction of chiral functional materials.

CONCLUSIONS

In  summary,  we  have  mainly  summarized  the  progress  of  our
research work and others on the construction of supramolecular
chirality  in  polymer  systems  based  on  the  chirality  induction,
transfer  as  well  as  the  applications  in  different  fields.  We  have
provided many examples of the chirality induction, regulation and uni-
que  features  of  supramolecular  chirality in  achiral  polymer
systems  using  chiral  solvents,  chiral  gelators,  circularly  polari-
zed light, chiral dopants and chiral scaffolds/templates. Besides
the  chirality  induction  in  achiral  polymer  systems,  we  also
reported  another  highly  efficient  strategy,  the  polymerization
induced  chiral  self-assembly  (PICSA),  for  constructing  hiera-
rchical supramolecular chiral  superstructures in situ.  The details
and  advantages  of  PICSA  can  be  referred  to  previous
research[114] and review.[2] In addition, some novel applications,
such as chiral  recognition and sensing,  chiroptical  switching,
and  circularly  polarized  luminescence,  have  also  been
investigated.  Remarkable developments have been made on
the  construction  of  supramolecular  chirality  in  polymer
systems,  as  represented  by  diverse  strategies  available,

 
Fig. 15    Schematic illustration of polymerization-induced chiral self-assembly. (Reproduced with permission from Ref. [114]; Copyright
(2020) Wiley) (The online version is colorful.)
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however,  the  further  exploration  and  application  of
supramolecular  chirality  still  face  some  great  challenges.
Although there are many uncertainties and difficulties in the
fields, “all things before maturity have a bitter taste”. We hope
that  this  feature  article  will  provide new  insights  into  the
investigation  of  mechanism  and  structure  design,  and  further
advance the development of supramolecular chiral chemistry.
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